

13 MARCH 2024

RED METAL SUBSIDIARY ANNOUNCES MAIDEN INDICATED SILVER-LEAD RESOURCE AND ENLARGED COPPER-GOLD RESOURCE AT MARONAN

Red Metal's 53% owned subsidiary Maronan Metals Limited (ASX: MMA) has announced strong resource estimate results from its compilation of more than 16,000 metres of new drill data collected on the Maronan Project during its 2022 to 2023 drill campaign (refer to the attached ASX: MMA announcement dated 12 March 2024).

These results provide a firm platform from which to grow the Indicated Resources as a basis for advancing mining studies.

The drilling campaign has added significantly to the confidence for a positive mining study outcome. Combined the silver-lead orebody and the adjacent copper-gold plus gold-only orebodies now have total inferred resources exceeding 66 million tonnes that come within just 100 metres of surface, greatly enhancing the likelihood of a potential mine.

The MMA holding is a primary asset of the Company and Red Metal will continue to be a long-term supporter of MMA as it advances this exciting deposit towards development.

For further information concerning Red Metal's operations and plans for the future please refer to the recently updated web site or contact Rob Rutherford, Managing Director at:

Phone +61 (0)2 9281-1805 www.redmetal.com.au

Rob Rutherford Managing Director Russell Barwick Chairman

Updated Resource Estimate Fuels Ideas of Early Development Potential of the Shallow Starter Zone

The Board of Maronan Metals is pleased to announce results of a recent resource estimate which underlines the large size and significant grade of the Maronan silver-lead and coppergold deposit and the early development potential of the **Shallow Starter Zone**. This estimate also highlights the bulk potential of the copper-gold mineralisation and a new gold-only opportunity.

HIGHLIGHTS

The total Inferred plus Indicated Resource within the Shallow Starter Zone applying at > 3% lead cut-off grade is estimated at:

11.1 Mt at 5.3% lead, 111 g/t silver, 0.13 g/t gold.

This includes a maiden *Indicated Resource* estimate of:

2.1 Mt at 5.3% lead and 155g/t silver .

Applying a range of silver cut-off grades to the Shallow Starter Zone block model highlights scope for very high-grade silver shoots within the deposit including:

1.0 Mt at 6.4% lead, 246 g/t silver, 0.23 g/t gold (applying > 180 g/t silver cut-off grade).

Importantly, the silver-rich Indicated Resource comes to within only 100 metres of surface which should enhance the projects economic potential.

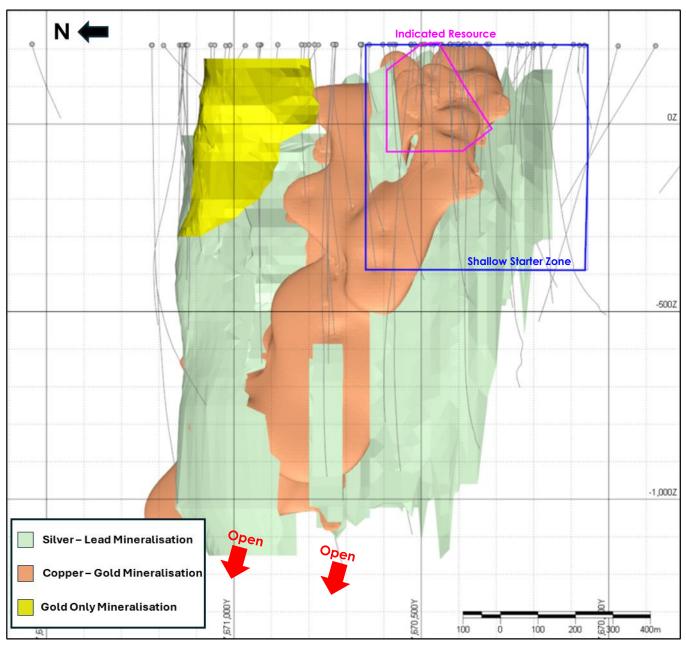
The Shallow Starter Zone resources occur within a larger total (global) silver-lead resource of:

32.1 Mt at 6.1% lead and 107g/t silver as Indicated plus Inferred (remains open at depth).

Maronan Metals drilling has also enlarged the Inferred Resource of the copper-gold mineralisation (applying a > 0.4% copper cut-off grade) to:

32.5 Mt at 0.84% copper, 0.61g/t gold and 7g/t silver (remains open at depth).

In addition, geological modelling has facilitated the estimation of a new gold-only Inferred Resource (applying a >1.0g/t cut-off grade) of:


1.8 Mt at 1.24 g/t gold (72,000oz)

Maronan Metals Managing Director Richard Carlton commented:

"Declaring the maiden Indicated Resource in the Shallow Starter Zone with the high silver grade is the perfect start to 2024. This result, so near to surface bodes well for potential mining scenarios. In addition, modelling has expanded the Inferred copper-gold resource and allowed the estimation of a new gold-only resource adding to the projects significant in-ground metal inventory. Our team has cost-effectively moved the Maronan deposit closer towards development and established an excellent database for early-stage mining studies and the next phase of drilling".

Maronan Deposit – Mineralised Domains Long Section View Looking East

[Figure 1]. Long section view of the mineralised domains of the Maronan deposit, showing the silver-lead domains in green, the copper-gold domains in orange and the gold-only domains in yellow. The Shallow Starter Zone outline is shown as a blue polygon and the area of indicated resource is depicted with a magenta polygon

Summary Discussion

Infill drilling and strong assay results from Maronan Metals 2022/2023 drill campaign have facilitated a revised resource estimate focused on silver-lead mineralisation within the Shallow Starter Zone and the Copper-Gold Zone. This work underlines the large size and significant grade of the Maronan deposit and the early development potential of the Shallow Starter Zone (Figure 1).

Importantly, the new resource estimate outlined a silver-rich maiden Indicated Resource that comes to within only 100 metres of surface which should enhance the project's economic potential (Tables 2 to 4, Figure 3). Resource modelling also outlined an enlarged Inferred Resource of copper-gold mineralisation (Tables 5 and 6) and a new gold-only opportunity (Table 7).

Maronan Metals 2022/2023 drilling campaign was completed in the December 2023 quarter having drilled 16,784 metres since the program commenced in August 2022. Shallow drill success led to the definition and focused drill activity on the Shallow Starter Zone which continues to offer the best opportunity for any early potential development (Figures 1 to 3).

Drilling highlighted many potentially mineable widths of higher-grade silver with lead mineralisation and broad intervals of copper and gold mineralisation. This helped to confirm the resource potential at Maronan and highlight the strong continuity and plunge control of the mineralisation (Figures 2, 4 and 5). Importantly, the closer spaced drilling continues to add value by discovering thickened, high grade, shoots between the more widely spaced historic holes (Table 3).

The outline of our *first Indicated Resource* near to surface is a significant milestone for the Maronan project and the Company (Table 4 and Figure 3). It shows the large Maronan silver-lead resource has the geological continuity needed to successfully transition from an Inferred Resource to a lower-risk Indicated Resource category with further infill drilling – a key first step towards development of this large deposit.

Using the new drill data, Maronan Metals expert team has completed a new resource estimate for the deposit according to the JORC Code 2012 with results for the separate silver-lead, copper-gold and gold-only deposits discussed below.

Notably, the Maronan deposits total resource base is estimated to contain about 118 million ounces of silver, 2 million tonnes of lead, 272,000 tonnes of copper and 0.76 million ounces of gold (Table 1) with the large silver-lead and copper-gold resources remaining open at depth (Figures 2 and 5).

Table 1. Maronan Deposit Total Contained Metal.

Total Resource	Silver	Lead	Copper	Gold
Contained Metal	118 MOz	2 Mt	272,000 t	0.76 Moz

Work to date has reinforced our understanding of the deposit's geometry and significant size potential while metal and grade variations allow considerable flexibility and optionality in how the resources can be appraised.

Silver-Lead Resources

<u>Shallow Starter Zone</u>

The Shallow Starter Zone resource falls within a defined area offering the best opportunity for any potential early development. The zone starts from surface and extends to 600 metres depth and continues along a strike length of 500 metres (Figures 1 to 3). Closer spaced drilling within this zone has enabled an updated Inferred Resource and maiden Indicated Resource to be estimated for the silver-lead sulphide mineralisation (Table 2, Table 3 and Table 4).

The resource estimation utilised geological cross sections and level plans to constrain interpretation of the silver-lead grade envelopes allowing several individual domains at grades above 1% lead to be modelled (Figure 3).

A maiden *Indicated Resource* is reported for domains 30 and 40 from the Eastern Horizons (Table 4 and Figure 3). This Indicated Resource, which comes within 100 metres of surface and offers scope for early development, is estimated at:

2.1Mt at 5.3% lead and 155 g/t silver (applying > 3% lead cut-off grade).

The total Inferred plus Indicated Resource estimates within the Shallow Stater Zone at a range of **lead cut-off grades** (Table 2) include:

- 14.3 Mt at 4.6% lead, 100 g/t silver, 0.12 g/t gold (applying > 1% lead cut-off grade),
- 11.1 Mt at 5.3% lead, 111 g/t silver, 0.13 g/t gold (applying > 3% lead cut-off grade),
- 5.0 Mt at 6.8% lead, 130 g/t silver, 0.13 g/t gold (applying > 5% lead cut-off grade),
- 0.9 Mt at 9.8% lead, 146 g/t silver, 0.12 g/t gold (applying > 8% lead cut-off grade).

Applying a range of *silver cut-off grades* to the same block model (Table 3) highlights the scope for very high-grade silver shoots within the deposit which are beginning to be revealed with the closer spaced drilling. Standouts include:

- 4.3 Mt at 5.6% lead, 168 g/t silver, 0.16 g/t gold (applying > 120 g/t silver cut-off grade),
- 1.9 Mt at 5.9% lead, 207 g/t silver, 0.20 g/t gold (applying > 150 g/t silver cut-off grade),
- 1.0 Mt at 6.4% lead, 246 g/t silver, 0.23 g/t gold (applying > 180 g/t silver cut-off grade),
- 0.6 Mt at 6.8% lead, 285 g/t silver, 0.26 g/t gold (applying > 210 g/t silver cut-off grade).

<u>Total Resource</u>

The Shallow Starter Zone resources outlined above occur within a larger total (or global) silver-lead resource estimate for the Maronan deposit of:

32.1Mt at 6.1% lead and 107 g/t silver as Inferred plus Indicated (applying > 3% lead cut-off grade).

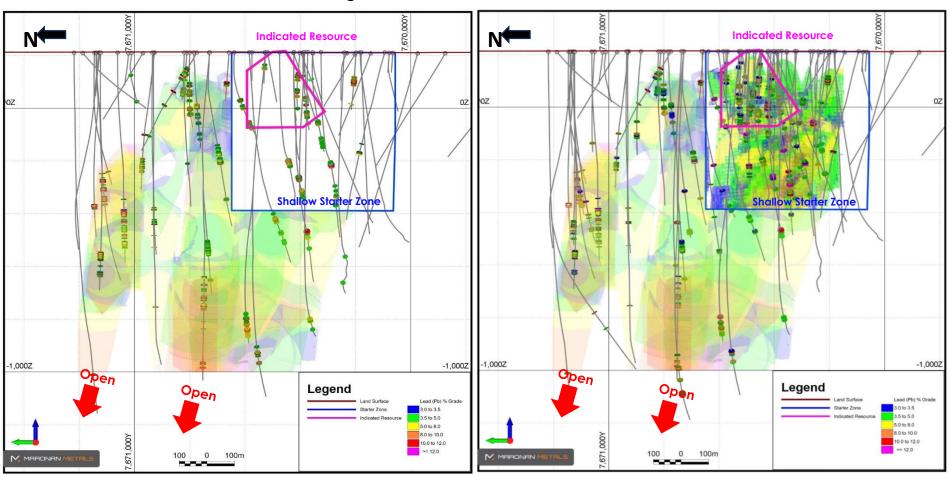
The estimation (Table 4 and Figure 3) utilises the improved Shallow Starter Zone resources and, due to the limited deeper drilling, the existing 2015 resource estimate (ASX:RDM 27 October 2015 Maronan Deposit – Summary of Inferred Resource Estimates). This large silver-lead resource is open at depth and remains a target for future infill and step-out exploration drilling.

Table 2. Summary of 2024 silver-lead sulphide mineral resource estimates for Shallow Starter Zone with varying lead cut-off grades (JORC 2012 compliant).

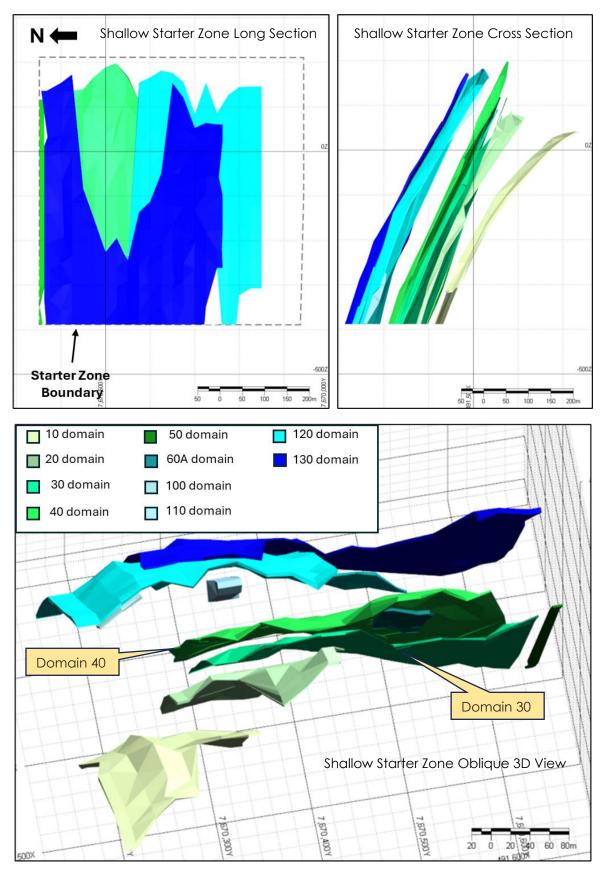
JORC 2012	Cut-off Lead %	Million Tonnes	Grade Lead %	Grade Silver g/t	Grade Gold g/t	Contained Lead Tonnes	Contained Silver Million Oz	Contained Gold Oz
Inf+Ind	1%	14.3	4.6	100	0.12	665,000	46.0	56,200
Inf+Ind	3%	11.1	5.3	111	0.13	590,000	39.8	46,800
Inf+Ind	5%	5.0	6.8	130	0.13	340,000	20.8	20,200
Inf+Ind	8%	0.9	9.8	146	0.12	85,000	4.0	3,400

Table 3. Summary of 2024 silver-lead sulphide mineral resource estimates for Shallow Starter Zone with varying silver cut-off grades (JORC 2012 compliant). These estimates are mostly Inferred Resources with about 20% reaching the Indicated Resource category as outlined below in Table 4 below.

JORC 2012	Cut-off Silver g/t	Million Tonnes	Grade Lead %	Grade Silver g/t	Grade Gold g/t	Contained Lead Tonnes	Contained Silver Million Oz	Contained Gold Oz
Inf+Ind	0	14.5	4.6	99	0.12	670,000	46.1	57,000
Inf+Ind	30	13.0	4.8	109	0.12	620,000	45.4	49,000
Inf+Ind	60	11.1	5	119	0.12	550,000	42.5	43,000
Inf+Ind	90	7.5	5.3	140	0.14	400,000	33.9	34,000
Inf+Ind	120	4.2	5.6	168	0.16	240,000	23.0	22,000
Inf+Ind	150	2.0	6	207	0.20	115,000	13.0	12,000
Inf+Ind	180	1.0	6.4	247	0.23	66,000	8.2	8,000
Inf+Ind	210	0.6	6.8	285	0.26	42,000	5.6	5,000


Table 4. Summary of 2024 total silver-lead sulphide mineral resource estimates for the Maronan project applying a > 3% lead cut-off grade (JORC 2012 compliant).

Total Maronan Silver-Lead Sulphide >3% Lead% Cut-off JORC 2012	Million Tonnes	Grade Lead %	Grade Silver g/t	Contained Lead Tonnes	Contained Silver Million Oz
Shallow Starter Zone					
Indicated	2.1	5.3	155	110,000	10.3
Inferred	9.0	5.3	101	480,000	29.5
Inferred & Indicated	11.1	5.3	111	590,000	39.8
Outside Shallow Starter Zone					
Inferred	21.0	6.5	105	1,370,000	70.8
Total (Global) Resource					
Inferred & Indicated	32.1	6.1	107	1,960,000	110.6


2015 Block Model Excluding the Starter Zone Shown With Pre-MMA Drilling

2024 Global Silver Lead Resource With 2024 Starter Zone Block Model Including New MMA Drilling

[Figure 2] Long section view of the block models for Maronan deposit viewed facing east. As at 2015 (left) showing Shallow Starter Zone area (blue rectangle) and Indicated Resource area (magenta polygon). 2024 block model overlain on the 2015 block model with all drilling up to 2024 (right). Note the higher density of drilling over the Shallow Stater Zone by 2024.

[Figure 3] Modelled domains of mineralisation for the 2024 Shallow Starter Zone silver-lead resource. Domains 100 - 130 are from the Western Horizon and Domains 10 - 60A are from the Eastern Horizon. Top left is a long section view looking east. Top right is a cross-section view looking north. Below is an oblique 3D view looking west north west.

Copper-Gold Resource

Maronan Metals 2022/2023 drilling and a new geological model has enabled revised Inferred Resource estimates for the Copper-Gold Zone (Table 5) at a range of copper cut-off grades to:

- 64.2 Mt at 0.56% copper, 0.38 g/t gold and 7 g/t silver (applying a > 0.2% copper cut-off grade),
- 32.5 Mt at 0.84% copper, 0.61 g/t gold and 7 g/t silver (applying a > 0.4% copper cut-off grade),
- 20.6 Mt at 1.04% copper, 0.77 g/t gold and 7 g/t silver (applying a > 0.6% copper cut-off grade),
- 8.8 Mt at 1.38% copper, 0.94 g/t gold and 8 g/t silver (applying a > 1.0% copper cut-off grade).

Primary copper mineralisation occurs as disseminated and vein-controlled chalcopyrite associated with iron sulphide (pyrrhotite) and silica alteration. The silica alteration occurs in a plane dipping approximately 70 degrees towards the west and has a moderately steep plunge (65 degrees towards 290 degrees).

Mineralisation was constrained using a > 0.2% copper grade shell that reflects the plunge to the silica alteration. This mineralisation shell has true widths ranging between 10 - 40 metres (locally up to 60 metres) and shows a strong down-plunge continuity. The copper-gold resource extends from the base of transported cover (at 40 metres) to 1,200 metres below surface where it remains open at depth (Figures 4 and 5).

A funnel-shaped zone of localised deep weathering occurs adjacent to and on the south side of the east-west trending mafic dyke (Figure 4). Secondary copper sulphide species within the deep weathered zone include chalcocite, bornite, covellite, digenite plus native copper. No malachite or azurite have been observed. Copper ore has been defined into three subtypes:

- Weathered containing visible native copper and some chalcocite
- Transitional containing chalcocite, bornite, covellite, digenite and variable chalcopyrite
- Primary containing fresh chalcopyrite

The copper-gold resource estimates for the individual ore types applying a >0.4% copper cut-ff grade are summarised in Table 6. First pass metallurgical tests work on these ore types are in progress.

This large copper-gold resource is open at depth (Figures 4 and 5) and remains a target for future infill drilling and deeper step-out exploration where higher-grades of copper sulphide-dominant mineralisation are speculated.

Table 5. Summary of 2024 copper-gold mineral resource estimates for the Maronan project applying varying copper cut-off grades (JORC 2012 compliant).

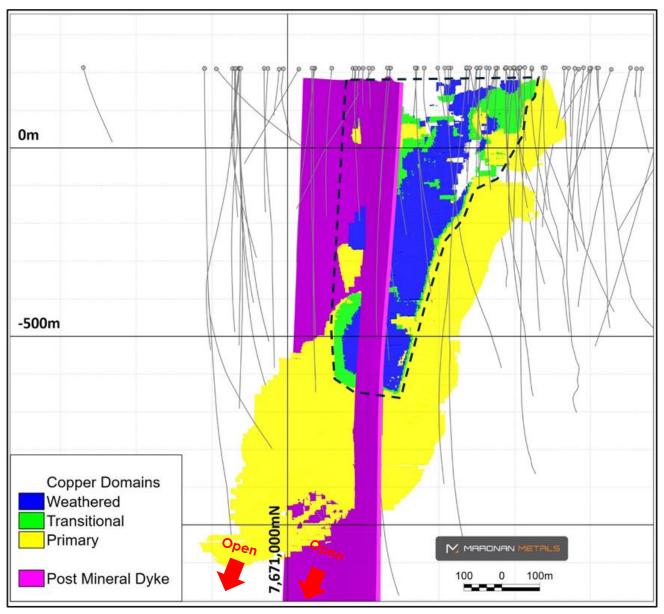

JORC 2012	Cut-off Copper %	Million Tonnes	Grade Copper %	Grade Gold g/t	Grade Silver g/t	Contained Copper tonnes	Contained Gold Oz	Contained Silver Million Oz
Inferred	0.1	75.8	0.50	0.34	7.0	380,000	824,000	17.0
Inferred	0.2	64.2	0.56	0.38	7.0	361,000	790,000	14.4
Inferred	0.3	43.1	0.72	0.50	6.1	309,000	696,000	8.4
Inferred	0.4	32.5	0.84	0.61	6.9	272,000	640,000	7.2
Inferred	0.5	26.4	0.93	0.69	7.3	245,000	587,000	6.2
Inferred	0.6	20.6	1.04	0.77	6.6	214,000	513,000	4.4
Inferred	0.7	17.0	1.12	0.82	7.1	191,000	451,000	3.9
Inferred	0.8	14.1	1.20	0.89	7.7	168,000	402,000	3.5
Inferred	0.9	11.0	1.29	0.91	8.2	143,000	323,000	2.9
Inferred	1	8.8	1.38	0.94	8.2	122,000	265,000	2.3

Table 6. Summary of 2024 copper-gold mineral resource estimates of key ore types for the Maronan project applying a >0.4% copper cut-off grade (JORC 2012 compliant).

Ore Types >0.4% Copper Cut-off JORC 2012	Million Tonnes	Grade Copper %	Grade Gold g/t	Grade Silver g/t	Contained Copper tonnes	Contained Gold Oz	Contained Silver Million Oz
Weathered Inferred	1.6	0.77	0.72	8	12,000	36,000	0.4
Transitional Inferred	7.1	0.77	0.40	4	55,000	91,000	1.0
Fresh Inferred	23.8	0.86	0.67	8	205,000	513,000	5.8
Total	32.5	0.84	0.61	7	272,000	640,000	7.2

Long Section View to East

[Figure 4] Copper-gold mineralisation domains, coloured by ore type, showing the location of the post-mineral dyke and the depth extent of weathering.

Gold-Only Resource

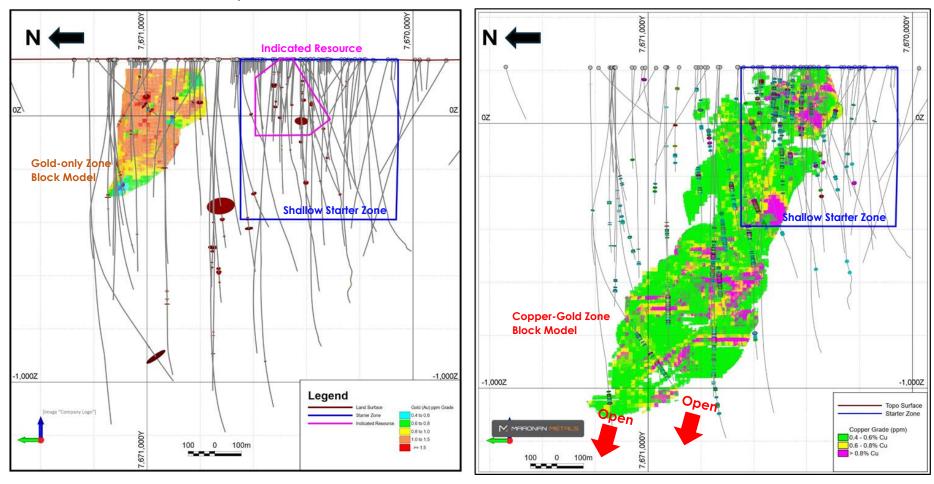
Geological modelling has also facilitated the estimation of a new gold-only Inferred Resource (applying a >1.0g/t cut-off grade) of:

• 1.8 Mt at 1.24g/t gold (72,000oz).

Mineralisation in the Gold-Only Zone appears stratabound and localised within magnetite-carbonate facies banded iron formation units at the Northern Fold structure (Figure 1 and Figure 5). The mineralised domain has been constrained geologically and at grades above 0.25 g/t gold allowing the estimation of an Inferred Resource (Table 7).

Petrological analysis has identified gold disseminations as inclusions within magnetite and arsenopyrite. At depth, down the folds plunge approximate 500m below surface, the iron formation facies changes from magnetite-carbonate to magnetite-sulphide and the mineralisation switches from gold to silver-lead. Drilling to date has intersected fresh primary gold mineralisation and it is not known if there is a portion of weathered/oxide mineralisation closer to surface.

More metallurgical test work and targeted drilling on the shallower gold-only mineralisation is proposed.


Table 7. Summary of 2024 gold-only mineral resource estimate for the Maronan project (JORC 2012 compliant).

Gold-Only >1g/t Gold Cut-off JORC 2012	Million Tonnes	Grade Gold g/t	Contained Gold Oz
Fresh Inferred	1.8	1.24	72,000

2024 Gold-Only Block Model

2024 Copper-Gold Block Model

[Figure 5] Long section view (looking east) of the Gold Only Zone (left), coloured by the estimated gold grade (in ppm). Long section view (looking east) of the Copper-Gold Zone, coloured by the estimated copper grade (right). Note the potential for shallow copper-gold resources in the Starter Zone.

-ENDS-

This announcement was authorised by the Board of Maronan Metals Limited.

For further information on the Company, please visit: maronanmetals.com.au

CONTACT

Richard Carlton

Managing Director +61 402 298 029

richard.carlton@maronanmetals.com.au

Mark Flynn

Investor Relations +61 416 068 733

mark.flynn@maronanmetals.com.au

Maronan Metals Limited (ASX:MMA) is an Australian mineral explorer focused on realising the growth potential of the advanced Maronan copper-gold and silver-lead deposit in the Cloncurry region of northwest Queensland - one of Australia's most productive mineral provinces.

As at 2024, the Maronan project contains JORC 2012 compliant Inferred and Indicated Resources of:

- 32.1 Mt @ 6.1% lead with 107 g/t silver (using >3% lead cut-off grade) including
 - 2.1 Mt @ 5.3% lead with 155 g/t silver (using >3% lead cut-off grade) Indicated Resource,
- 32.5 Mt @ 0.84% copper with 0.61 g/t gold and 7 g/t silver (using >0.4% copper cut-off grade),
- 1.8 Mt @ 1.24 g/t gold (using >1.0 g/t gold cut-off grade).

Work to date has reinforced our understanding of the deposit's geometry and significant size potential while metal and grade variations allow considerable flexibility and optionality in how the resources can be appraised.

COMPETENT PERSONS STATEMENT

The information in this report that relates to 2024 Starter Zone - Silver-Lead Resource Estimate, the 2024 Copper-Gold Resource Estimate and the 2024 Gold-Only Resource Estimate is based on and fairly represents information and supporting documentation compiled by Mr Andrew Barker, who is a member of the Australian Institute of Geoscientists (AIG Membership ID: 6299). Mr Barker is the Exploration Manager for Maronan Metals Limited. Mr Barker has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Barker consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to 2015 Outside the Starter Zone – Silver-Lead is based on and fairly represents information and supporting documentation compiled by Mr Robert Rutherford, who is a member of the Australian Institute of Geoscientists (AIG). Mr Rutherford is the Non-Executive Technical Director of the Company. Mr Rutherford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Rutherford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All sampling used in the Maronan project mineral resource estimation was taken from diamond drill core. Historic samples (prior to Maronan Metals – 2022 onwards) were taken as either half or quarter core samples of the drill core. Drill core was typically NQ or NQ2, although some BQ and HQ core was also sampled. Sampling by Maronan Metals was half core samples of NQ3, NQ2, HQ3 and some PQ sized drill core Sample lengths were typically 1m, but varied from 0.4m to 1.5m in length to honor geological contacts. A total of 88 drill holes have been included in the Maronan Resource The 88 holes average 605m deep and range in depth between 69.5m and 1543.8m. Holes were generally angled towards grid east between -55 and -90 degrees to optimally intersect the mineralised zones. Physical core is available for 73 of the 88 holes. Paper copies of original laboratory reports and geological logs are available for 19 historic holes. Digital laboratory reports and geological and geophysical logs are available for 69 more recent holes. Historic sampling (prior to Maronan Metals) was completed on ½ NQ2 core or ½ HQ diameter core has been sampled to ensure sample representativity for all holes. Continuous geologically defined intervals were regularly sampled at a 1.0m interval locally down to 0.4m or up to 1.5m based on geological controls. These samples were logged for lithology, density, magnetic susceptibility, structure, RQD and other attributes. Second ¼ core duplicate samples were collected at selected intervals to check sample representativity. Quality control checks using standards, blanks or duplicates are included at a sample rate varying from about one in ten to one in twenty. Maronan Metals has used ½ core sampling of NQ3, NQ2, HQ3 and PQ diameter drill core. Samples have been submitted for assay analysis with ALS Global at the Mt Isa Laboratory. Samples are crushed and pulverized to 85% passing 75um. Samples are then assayed using

		METHES
Criteria	JORC Code explanation	Commentary
		return over-limit assays from the ME-MS61 assays, samples are reassayed using the OG62 method. • Maronan Metals has included standard and blank samples to monitor laboratory performance at a rate of approximately 1:25 samples. In addition to this, ALS has also included addition standard and blank materials to monitor the performance of the laboratory. Maronan Metals also completed a program of re-assaying historic Red Metal pulps, and a program of umpire sampling on pulps from the 2022-23 drill program.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Over the entire history of exploration at Maronan, a variety of drilling methods have been undertaken including: rotary air blast, aircore, reverse circulation and diamond drilling. Due to challenging conditions in the transported cover, diamond drilling has been the main drilling method used for the Maronan project. Only diamond drilling is included in the Resource Estimation for the silver-lead and copper-gold mineralisation. Two RC holes (MNR4, MNR5) are included in the estimate of the gold-only domain. A conventional wire-line core rig was utilised to extract PQ, HQ or HQ3, NQ or NQ2 and locally BQ diameter core samples in mineralisation. The 69 most recent holes have oriented cores. Core orientation measurements were attempted every core run using a Reflex ACT orientation tool. The majority of measurements were successful.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The length of recovered core and the core rock quality are logged for each core run. Core recovery throughout the fresh sulphide mineralised zones is very good (100%). Recoveries throughout the weathered mineralised zones are variable from 100% to less than 30% in some intervals. Core recoveries for the weathered copper vein zone material are sometimes very poor which may have resulted in an underestimate of the contained metal content in this zone. Diamond core is reconstructed into continuous runs on an angle iron cradle and marked with orientation lines. Depths are checked against depths marked on the core blocks and rod counts are routinely performed by the drillers. Insufficient data is available to determine a bias relationship between poor sample recovery and grade. Twinning of holes with poor sample recovery is required in the weathered zone.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Quantitative geotechnical logging including RQD, core recovery, fracture frequency, and qualitative hardness are measured for each core run. Qualitative and quantitative codes and descriptions are used to record geological data such as lithology, mineralisation, alteration and structure prior to sampling. Magnetic susceptibility has been measured at 1m intervals for all 2022-2023 drilling by Maronan. For historic drilling by Red Metal, magnetic susceptibility was measures for every sample interval, and every tray (3-5m) outside of mineralized zones. In addition to logging all drilling from the 2022/23 drill program, Maronan Metals relogged approximately 15,000m of historic drill core from Red Metal and BHP. Density measurements (using the Archimedes method) have been collected within mineralised zones and surrounding rocks. A total of 3749 density measurements have been taken for the Maronan project. Samples were taken over intervals between 0.2 – 0.5m in length.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was cut in half using a diamond blade core saw. Drill core was cut slightly off the orientation line, with sampling of the half core that did not have the orientation line. The sampling method utilized is considered appropriate for the styles of mineralisation at the Maronan project. Upon receipt at the lab, samples are checked against the dispatch and logged into the LIMS system. Samples weights are captured and any discrepancies with the submittal documents are confirmed. Samples are then dried in an oven. Samples are crushed to 90% passing 4mm, then split with a rotary splitter to generate a 500g split for pulverization. The crushed sample is pulverized using an LM2 mill to a sizing of 85% passing 75um. The 500g split is then divided into 3 packets, with one sent to ALS Townsville for 25g fire assay with AAS finish, one packet sent to ALS Brisbane for ME-MS61 analysis, and one packet (pulp master) retained at ALS Mount Isa Certified Standards were inserted at a rate of 1:25 samples. Two different sets of standards are utilized, one for the lead, silver, zinc mineralisation (OREAS 135B; OREAS 136; OREAS 315; OREAS 317) and one for the copper, gold mineralisation (OREAS 520; OREAS 521; OREAS 522; OREAS 523; OREAS 601C) Blanks were inserted at a rate of 1:25 samples. Additional blanks were used where native copper was observed to ensure no carry-over between samples.

		METALS
Criteria	JORC Code explanation	Commentary
		 No duplicate second-half drill core samples have been submitted. No specific grain size analysis has been completed on the Maronan project, however sampling methods utilised are consistent with those used by other mining and exploration projects targeting similar styles of mineralisation in the Mt Isa Belt. For historic drilling (prior to Maronan Metals), diamond core was half core (NQ, BQ) or quarter core sampled (HQ). For work completed by Red Metal, a limited number of duplicate samples were submitted. Further details can be found in (ASX: RDM 27 Oct 2015 Maronan deposit – Summary of Inferred Resource Estimates)
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 For historic drilling (Prior to Maronan Metals), samples have been assayed using a four acid (near total) digest techniques and multi-element analysis using an ICP/MS determination which is of high quality and appropriate for the fresh sulphide and weathered mineralisation at Maronan. The acids used are hydrofluoric, nitric, perchloric and hydrochloric acids suitable for silica and sulphide based samples. High-grade base metal results >1% were repeated using an ore-grade ICP/AES technique which utilises an aqua-regia acid digest suitable for high-sulphide ores. Aqua-regia digest is a powerful solvent for sulphides and ideal for determination of base metals and silver in sulphide rich ores. Aqua-regia digest with an ICP/MS determination offers high-quality, reliable detection ranges for lead 0.001 to 20%, copper 0.001 to 50% and silver 1-1500g/t and is considered appropriate for the higher grade fresh sulphide and weathered mineralisation styles at Maronan. Any zinc, lead, copper or silver in resistive silicate minerals will not be reliably detected with this method. For drilling completed by Maronan Metals during 2022-2023, samples were assayed by Au-AA25 (30g fire assay) technique for gold and the ME-MS61 method for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, TI, U, V, W, Y, Zn and Zr. For over limit samples of Ag, Cu, Pb, Zn, samples are assayed by the ore grade OG-62 method. Au-AA25 is considered a total assay method for gold. ICP-ME61 is considered a "near total" digest method, with only the most resistive minerals (eg Zircons) only partly dissolved. The methods of assaying utilised are considered appropriate for the style of mineralisation targeted. No geophysical tools were used to determine element concentrations at Maronan. For Maronan Metals, standard and blank samples were inserted at a

Criteria	JORC Code explanation	Commentary
		 rate of 1:25 samples each. The standards used displayed acceptable levels of accuracy and precision. Any QAQC failures are recorded in Maronan Metals QAQC action register and follow up actions are recorded. Blank samples submitted were within acceptable limits. No duplicates at the sampling stage were submitted. A selection of historic Red Metal pulps (from 2012 – 2014 drilling) were re-submitted for base metal analysis using the ME-MS61 method with results showing a very high degree of correlation with the original results. Maronan Metals submitted approximately 170 samples from the 2022/23 drilling program for umpire sampling. Pulps from ALS were submitted to Intertek Townsville for analysis by four acid digest with ICP-MS finish. The standards used displayed acceptable levels of accuracy and precision. For drilling prior to Maronan Metals; industry standard quality control and assurance procedures have been applied to 16 holes drilled by Red Metal and some BHPB and Phelps Dodge drilled holes. Records for the BHPB drilled holes are incomplete. No quality control records are available for the 19 historic holes drilled by Shell Minerals and MPI. For recent samples certified reference materials with a good range of values and blanks were inserted blindly and randomly at a rate of between one in ten and one in twenty over the mineralised intervals while the laboratory routinely inserts blanks and runs duplicate checks from the pulverised sample. All base metal results greater than 1% are re-assayed using an ore-grade technique. Results highlight that the sample assay values are accurate and that contamination has been contained. Routine repeat or duplicate analyses by the laboratory reveal the precision of the analysis is within acceptable limits. The QA/QC procedures of the historic assay data drilled by Shell Minerals and MPI are unknown and their level of accuracy and precision is unknown. Quality control data from the 20
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All intervals of core have been visually verified by Maronan Metals Limited Exploration Manager, and selected intervals of core have been visually verified by Maronan Metals Limited Managing Director and Technical Non-Executive Directors. A resource consultant from Frederickson Geological Services has also visually verified intervals of mineralisation

Criteria	JORC Code explanation	Commentary
		 No holes have been twinned at this stage of exploration. Two wedges were completed off hole MRN14005 (MRN14005X1, MRN14005X2) that replicated the ore zone intersected in MRN14005. Primary logging data is entered into a excel spreadsheet set up to logging with standard drop-down tables linked to Maronan Metals logging codes. Excel files are loaded into Maronan's Geobank database using a standardized import template. Data is initially loaded to a buffer table, where validation checks are performed. Once all validation checks are complete, data is promoted to the live database. The excel spreadsheet is saved on Maronan's network. Assay files are received as pdf and csv files from the Laboratory. These are saved on Maronan's network. The csv files are loaded into Maronan's Geobank database using a standardized importer. Data passes through a QAQC check during the import process. If results do not pass QAQC, they are logged in Maronan Metals QAQC Log and actions taken are recorded. Data is promoted once QAQC checks are completed. Data that fails QAQC is given a different priority, such that it does not appear in data exports, but is recorded in the database. Micromine and Leapfrog Geo 3D software is used to check and validate drill hole data spatially. No adjustments or calibrations were used in any of the assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drilling for the Maronan project used the MGA94 Zone 54 Datum Drilling by Phelps Dodge, BHPB and Red Metal utilized Reflex Style and conventional eastman magnetic survey cameras. Red Metal completed north seeking gyroscope downhole surveys on 9 holes. Historic drill holes utilised a local grid with an AGD66 Datum and have been converted to the MGA94 Datum Maronan Metals used an Axis north seeking gyroscope to survey the downhole position of all drill hole in the 2022/23 drill program Drill collars positions have been surveyed Maronan Metals has surveyed most drill holes from the 2022/23 drill program using RTK-GPS accurate to within 1 cm. Maronan has also located a number of historic drill collars and resurveyed these also using the RTK-GPS. A small number of drill holes have been surveyed by standard GPS accurate to with 3m. Topographic relied at Maronan has been surveyed during a detailed 50m x 50m gravity survey. The region is flat with relief varying less than 3m over the project area.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The data spacing for the Maronan deposit is variable across the deposit. Some areas are drilled to approximately 50m x 60m spacing with some holes as close as 35m apart. This has resulted in a small portion of the silver-lead resource to be classified as Indicated Resource. Within the remainder of the resource, drill spacing varies between 100 x 100m spacing to 200 x 200m spacing. These sections of the resource are classified as Inferred Resource The drill spacing is sufficient to outline the structural geometry, broad extent of mineralisation and grade variations in the mineral system. Where the drill spacing is 50 x 60m spaced, the distribution of drilling and spacing is sufficient to indicate a Mineral Resource. Where the drill spacing is broader, there is sufficient data to infer a Mineral Resource. For the silver-lead, and gold-only resources, drill data has been composited to 1m intervals. For the copper-gold resource, drill data has been composited to 2m intervals
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Silver-lead and gold mineralisation occurs within stratiform layers than have been folded along an approximately north-south axis. The folds are tight, steeply plunging isoclinal structures. The fold axis, and bedding along the main mineralised limb of the fold both dip 60 – 70 degrees towards the west (~280). East directed drilling generally provides a representative, unbiased sample across the mineralisation. Within the northern fold hinge, a different drilling orientation may be required to get representative sampling. Copper-gold mineralisation is associated with a zone of silica alteration. The orientation of the silica alteration is similar to the alignment of boudin necks, and mineral lineations plunging moderately steeply to the northwest (65 towards 290). Logging in 2023 also identified a series of sulphide veins that appear to form a conjugate vein set dipping 70 towards 155 and 60 towards 315. East directed drilling is suitable for defining the broad geometry of the Copper-Gold Zone however, this may result in sub-optimal sampling of the sulphide vein sets. Orientation of drilling is not considered to have introduced bias to the sampling.
Sample security	The measures taken to ensure sample security.	 Chain of custody is managed by Maronan Metals. Samples from Maronan are packaged and stored at Maronan Metals core yard in Cloncurry. The yard is fenced by a six-foot tall cyclone fence with lockable gates. There is also CCT surveillance of the yard. Samples are

Criteria	JORC Code explanation	Commentary		
		cut and packaged by Maronan into bulka bags. These are collected from Maronan's core yard by Cloncurry Couriers, who deliver the samples to ALS Mount Isa. ALS provide an online tracking service for samples.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data	 No audits or reviews of the sampling techniques and data have been completed 		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Maronan is located within EPM 13368 situated in the Cloncurry region of north-west Queensland. EPM 13368 is owned 100% by Maronan Metals Limited. No material ownership issues or agreements exist over the tenement. An ancillary exploration access agreement has been established with the native title claimants and a standard landholder conduct and compensation agreement has been established with the pastoral lease holders. The tenements are in good standing and no known impediments exist
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The extent of mineralisation at Maronan has been defined by 54 diamond core drill holes drilled by five different companies since 1987 until the present. Shell Minerals/Billiton/Acacia discovered base metal mineralisation on the project in 1987 and completed 16 shallow holes to 1993. From 1995 to 1996 MPI completed 3 holes into the northern and southern fold hinge structures. From 2001 to 2004 Phelps Dodge completed 6 holes. BHP Cannington undertook a campaign of silverlead exploration from 2006 to 2008 completing 13 holes. Red Metal Limited completed 16 holes from 2011 to the 2019 seeking depth extensions to the bedded silver-lead and separate copper-gold mineralisation. Maronan Metals was spun out of Red Metals in 2022 and has subsequently drilled thirty seven holes and is continuing to explore the Maronan project.
Geology	Deposit type, geological setting and style of mineralisation.	 Exploration on Maronan has identified three separate styles of mineralisation, bedded silver-lead mineralisation partially overprinted by structurally controlled, copper-gold mineralisation, and gold only

Criteria	JORC Code explanation	Commentary
		 mineralisation The silver-lead mineralisation is of a similar style to the nearby Cannington deposit, one of the world's largest silver and lead producing operations. The Maronan silver-lead mineralisation occurs in two separate but sub-parallel banded carbonate-lead sulphide-magnetite-calcsilicate units referred to as the Western Horizon (Upper) and Eastern Horizon (Lower. The two horizons can be separated by up to 100 metres of quartz clastic meta-sediments (psammites, pelites and quartzite). At the Northern Fold Structure the Eastern horizon is folded forming a steep plunging tight to isoclinal fold structure with attenuated or transposed limbs and a thickened hinge zone region. The overprinting copper-gold mineralisation can be compared with the ISCG mineralisation styles at the nearby Eloise and Osborne ore bodies. Mineralisation is associated with intense silica alteration within a bedding-parallel structure focused between the Western and Eastern silver-lead mineralised zones and comprises strong pyrrhotite with variable chalcopyrite and minor magnetite. Gold only mineralisation occurs in the Northern Fold area, up-plunge on bedded silver-lead mineralisation within the Eastern Horizon and is associated disseminated arsenopyrite within strong magnetite-carbonate facies/alteration. This zone appears to transition downplunge to carbonate-sulphide dominant facies/alteration that hosts the silver-lead mineralisation. Silver-lead and copper-gold styles of mineralisation appear to show improvement in grade and widths at depth and remain open downplunge and at shallow levels between the existing wide spaced intercepts.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the 	See Appendix 2 to Appendix 5

Criteria	JORC Code explanation	Commentary
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No new exploration results reported
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No new exploration results reported
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	No new exploration results reported
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	No new exploration results reported
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Red Metal has previously reported preliminary metallurgical recoveries for the silver-lead mineralisation (ASX: RDM 29 Jul 2015, Preliminary Metallurgical Results. Maronan Metals has additional metallurgical testwork in progress.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, 	Maronan Metals intends to conduct further exploration at the Maronan project to continue increasing confidence in the resource estimates, as well as exploring for and extending higher grade shoots within the various zones of mineralisation. Both the silver-lead and

Criteria	JORC Code explanation	Commentary
	provided this information is not commercially sensitive.	copper-gold mineralisation remain open at depth, below existing drilling. See Figures 1,2,4,5 within the report.

Section 1.3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data collected during logging is imported into MMA's SQL Server based Geobank Database using data import templates. Data is initially loaded into a buffer table – where validation checks are run to ensure data matches library tables within the database. If errors are found – data cannot be promoted from the buffer table into the main database. Data Errors are checked and fixed by MMA's Exploration Manager. When all validation checks are passed – data is promoted into the main database For assay analysis data – reports are automatically generated from the Assay Labs LIMS system as pdf and csv files. The CSV files are loaded into MMA's Geobank database using an inbuilt data import procedure. Access the MMA's Geobank Database is via a licensed front-end with access limited to MMA's Exploration Manager. Data for the resource was exported from MMA's Geobank Database using standard views and tables to csv files, which were then loaded into software used for geological modelling and resource estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person for the 2024 Starter Zone Silver-Lead Resources, 2024 Copper-Gold Inferred Resource estimate and the 2024 Gold-Only Inferred Resource is MMA's Exploration Manager Andrew Barker. Mr Barker is a member of the Australian Institute of Geoscientists (Membership ID: 6299). Mr Barker is based in Cloncurry and has supervised all the drilling completed by MMA, as well as the relogging of approximately 15,000m of historic drill core. Mr Barker has undertaken numerous visits to EPM13368 during the drilling program, and his office is located at MMA's core processing facility in Cloncurry. The Competent Person for the 2015 Inferred Resource Outside the Starter Zone is Mr Rob Rutherford. Mr Rutherford is the non-executive technical director of Maronan Metals Limited, and the Managing Director of Red Metal Limited. Mr Rutherford is a member of the Australian Institute of Geoscientists (Membership ID: 3148). Mr Rutherford has completed a number of site visits during Maronan Metals drilling

Criteria	JORC Code explanation	Commentary
		program.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Confidence in the geological interpretation of the Maronan Deposit varies across different parts of the deposit, primarily as a function of drill hole spacing. There is no outcropping geology within the resource area, so the geological model is based off interpretation of drilling. Interpretation of the Geology has used a combination of logged lithology and lithogeochemical interpretation of rock types to model different lithological horizons. Structural data (primarily bedding and foliation measurements) have been used to constrain the interpreted orientations of the geology. The silver-lead mineralisation appears to be stratiform, and key mineralised horizons can be modelled the full length of the deposit. Gangue mineralogy can vary laterally along strike and down-dip along these horizons. The stratigraphy hosting the silver-lead mineralisation has been folded and metamorphosed, and mineralisation may be structurally thickened within fold hinges. Structural Interpretation by MMA shows that the fold hinges plunge 65 toward 275. Bedding along the main ore horizons has an average dip of approximately 65 degrees towards 280. Copper-gold mineralisation is associated with a zone of silica alteration, and in places appears to overprint the silver-lead mineralisation. Copper-gold mineralisation occurs along a plane similar to the silver-lead mineralisation (65 towards 290) The Maronan project is covered by approximately 40m of tertiary and cretaceous sediments. Below the Cretaceous-Proterozoic unconformity, rocks are usually weakly to moderately oxidised for a further 30 – 40m (70 – 80 metres below surface). An east-west trending mafic dyke, that post-dates mineralisation, cuts across the deposit near the northern edge of the copper-gold zone. A funnel of deep weathering and oxidation occurs on the southern side of the mafic dyke to a depth of about 700 metres below surface. Within the funnel the lithologies are oxidised and secondary copper mineral species including nativ
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	The deposit in described using the MGA94 Zone 54 coordinate system. The Maronan Resource covers an area is:

					METF	105
Criteria	JORC Code explanation	Commenta	ry			
			Model Extents			
			East	North	RL	
			490883	7670031	291	-
			491875	7671586	-1272	
	The notive and engrapsistances of the estimation technique (a)	and strik minerali surface Gold-or approxi The acr - 15m in zones fu Copper (locally Gold Or 10m	onan Deposit has es approximately restion extends from the at least 1200m ly mineralisation of the attended of	north-south. Bot om the base below surface occurs from be v surface. ver-lead minera ninges, structure on has true widtles a strong down vpically has ac	h silver-lead an of transported and remains of asse of transported alisation typical al repetition may not ranging between-plunge continuous strike width	d copper-gold (40m below open at depth. orted cover to by varies from 4 by thicken these oveen 10 – 40m muity.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	wirefran guided stratiforr • The 202 0.4% cu The doi alteration domain mineralin comple • Mineralin within m Northern as the u silver-lea magnet has bee	nes have been interported by the primary of units that host the decomplete formation of the compart of the constrained graph of the constrained gr	rpreted at a 1% lithological more mineralisation has een modelled up trends have before logical subdivities. Subsetting the second single gold-only of the folded sout where the nan sulphide-coologically and	Lead cutoff. The delift had ellift. been modelle sing interpolate been influence and geochemical ded to incomplete and stratabounce diron formation domain has bestratigraphy the dominant gan alcite. The mineral grades about the delift of t	d at 0.2% and ad grade shells. In a silicic al analysis. The proporate postion has been ad and localised on units at the present modelled at hosts deeper gue mineral is ralised domain ve 0.5g/t gold

		METALS
Criteria	JORC Code explanation	Commentary
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	minerals associated with this domain are magnetite, arsenopyrite and pyrrhotite. Petrological analysis has identified gold disseminations as inclusions within magnetite and arsenopyrite. Drilling to date has intersected unweathered primary gold mineralisation and it is not known if there is a portion of weathered/oxide mineralisation closer to surface. Drill spacing is variable across the 2024 Start Zone ranging from 35m out to 100m spacings. Within the Copper-Gold Zone and the Gold-Only Zone the spacings range from less than 50m in the upper levels (surface to 300 m below surface out to 150 m spacings at depth. A block size of 15m along strike, 15m vertical and 2.0m across strike has been used to estimate grade. Sub blocks have been used to control volume. This dimension is considered appropriate for the well drilled area and is a reasonable compromise in the Inferred Resource areas. Lead and silver are strongly correlated with distinct populations for the Eastern and Western horizons. Copper and gold are also correlated and commonly exist together. Silver is associated with the copper and gold mineralisation and has been modelled as art of this estimate. For the 2024 Estimates grades have been interpolated using Ordinary Kriging. Appropriate variograms have been obtained to give a good estimate of the nugget and short-range structures. Anisotropy and search directions are based on the stretching lineation's of fold axis obtained from structural logging data and have been applied to each estimation domain separately. The are generally plunge moderate or steep to the North West. A minimum of 3 composites and a maximum of 24 have been used to estimate grades into blocks with a maximum distance to the nearest composite of 200m. Search ellipses have a maximum long axis of 300m. Grade caps out top cuts have not been applied to the 2024 estimates. Data analysis for all domains show very well-behaved grade distributions with low Coefficient of Variations (C.V) being close to 1.0 and no obvious extreme outliers.

Criteria	JORC Code explanation	Commentary
		 considered materially import in potential project economics and sulphur has been used in constructing the primary domains which are sub divided by weathering. 2015 Mineral Resource Estimate has previously been released to the ASX (ASX: RDM 27 Oct 2015 Maronan Deposit – Summary of Inferred Resource Estimates). Maronan Metals have removed the 2015 resource blocks from the Starter Zone area and updated it with the new 2024 resource estimate blocks. There has also been a small portion of the 2015 silver-lead resource re-classified from fresh to oxide material as a result of updates to the weathering horizons. This additional oxide material has been depleted from the 2015 silver-lead resource estimate as oxide silver-lead mineralisation is not considered recoverable by Maronan Metals at this point in time.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The silver-lead resource estimate is reported at a 3% lead cutoff which is considered an appropriate economic cutoff for potential future mining. The copper-gold resource is reported at a 0.4% copper cutoff which when combined with the average gold grade at this cutoff is considered suitable as a cutoff for large scale underground mining techniques. The gold-only mineral resource is reported at a cutoff of 1.0 g/t.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The Maronan deposit is likely to be mined by underground mining methodologies. Suitable internal dilution has been incorporated into the 2024 estimation domains and is considered appropriate for the level of estimate that has been reported. Further dilution may need to be incorporated in future mining studies. Stope optimiser shapes have not yet been created to constrain the Mineral Resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	 Red Metal Limited have previously completed metallurgical test work on the carbonate hosted mineralisation which showed excellent metallurgical recoveries of up to 95% lead and 93% silver. Maronan Metals has further metallurgical test work in progress for the silver-lead and copper-gold styles of mineralisation Previous metallurgical test work on the silver-lead mineralisation

		METACS
Criteria	JORC Code explanation	Commentary
	Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 indicated that fluorine was above penalty limits, however, nearby mining operations at Cannington (\$32) and Dugald River (MMG) which also have fluorine manage this with acid leaching of the concentrate Copper-gold recoveries have been assumed at around 85% for copper and 60% for gold and silver, based on nearby mining operations (Eloise) that have mineralogically similar ores. For the Gold Only resource – no dedicated metallurgical test work has been completed.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 expect the Maronan project could be permitted for mining. Baseline flora and fauna surveys have commenced covering the area a potential mine may impact. Consultants completing this work for
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	samples were oxidized and/or vuggy, samples were wrapped in gladwrap prior to measurement. • A total of 3749 density measurements have been taken for the Maronan
Classification	The basis for the classification of the Mineral Resources into varying	The Maronan silver-lead resource is mostly classified as inferred resource,

		METALS
Criteria	JORC Code explanation	Commentary
	 confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	due to the broad drilling spacing (typically greater than 100m x 100m). The quality of data collected by Maronan Metals is considered high. The quality of historic data is variable. In particular, a subset of the resource within the Starter Zone has a drill spacing of approximately 50m x 60m, although locally, some holes are as close as 35m apart. Drilling in this area was mostly completed by Maronan Metals. There is a higher level of confidence in the geological and grade continuity in this area such that approximately 1.8Mt of material can be in classified as indicated resource. The indicated resource is located within domains 30 and 40 of the Starter Zone silver-lead resource estimate. The Maronan copper-gold resource estimate is defined by broadly spaced drilling (typically > 100m x 100m spacing) such that this resource should be classified as inferred. The Maronan gold resource estimate is defined by broadly spaced drilling such that this resource should be classified as inferred. Mr Rutherford is the competent person for the 2015 silver-lead resource outside the Starter Zone. The results appropriately reflect Mr Rutherford's view of the Deposit. Mr Barker is the competent person the 2024 Starter Zone silver-lead resource, the 2024 copper-gold resource and the 2024 gold resource. The results reflect Mr Barker's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits or reviews of the Mineral Resource Estimates have been completed
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Silver-Lead Mineral Resource is largely reported as an Inferred Mineral Resource which by nature of its definition is at a low level of confidence. A small section of the 2024 Starter zone has been classified as an Indicated Mineral Resource where drill spacing is around than 50m along strike by 60m vertically. This zone has a greater level of confidence and infill drilling during 2023 has provided confidence on geological continuity and grade repeatability. The Copper-Gold Zone and Gold-Only Zones are classified as Inferred Mineral Resources and have a low level of confidence at this stage and can be considered sound, well-constructed global estimates. Every effort has been made to ensure that geological continuity can be demonstrated prior to compilation of the estimates and sound independently verified primary lithological and alteration models have been constructed prior to completing the estimation domains. This is considered an important input prior to completing this estimate to demonstrate appropriate geological continuity.

Criteria	JORC Code explanation	Commentary	
		No production data is available to compare the relative accuracy or confidence of the estimate	

APPENDIX 2 – DRILL COLLAR TABLE

Hole ID	East ¹	North ¹	Dip°	Azim°	Depth (m)	RL (m)	SG ³	QA/QC ⁵	Company	DHEM Survey	PQ (m)	HQ (m)	NQ2 (m)	NQ (m)	BQ (m)	RC (m)
MND01	491492	7670656	-60	83	210	211.6		n/r	Shell	Yes				117		
MND02	491444	7670400	-60	83	268	210.4		n/r	Shell	Yes				223		
MND03	491419	7670196	-60	83	262.2	211.4		n/r	Shell	Yes				206.2		
MND04	491498	7670809	-60	83	213	210.8	2	n/r	Shell	Yes				134		
MND05	491573	7671020	-60	83	171	209		n/r	Shell	Yes				112		
MND06	491484	7671009	-60	83	255	210		n/r	Shell	Yes				219.3		
MND07	491404	7670798	-60	83	344.2	211.5		n/r	Shell	Yes				279		
MND08	490639	7670517	-60	108	218	212.6		n/r	Shell	Yes				159.1		
MND09	492181	7672696	-60	83	248.4	214		n/r	Shell	Yes				159.7		
MND10	491285	7670783	-60	83	453	211.6		n/r	Shell	Yes				399.5		
MND11	491711	7670229	-60	353	201	209		n/r	Shell	Yes				141		
MND12	491339	7670387	-60	83	351	211.6	5	n/r	Shell	Yes				297		
MND13	491237	7671537	-60	353	252	213		n/r	Shell	No				198		
MND14	491324	7670637	-70	83	401	211.9	4	n/r	Shell	Yes				250		
MND15	491183	7670353	-60	83	484	212.4		n/r	Shell	Yes				403.6		
MND16B	491371	7670076	-60	83	327	210		n/r	Shell	Yes				206.7		
MND18	491559	7670968	-60	349	291	209.1	4	n/r	MPI	No				196		
MND19	491856	7670200	-60	349	230	204.4		n/r	MPI	No				119.5		
MND20	491532	7671186	-50	173	321	209.5		n/r	MPI	No				289.4		
MND21	491136	7670728	-70	85	750	211.8	5	10	PD	Yes				370.5	242	243

Hole ID	East ¹	North ¹	Dip°	Azim°	Depth (m)	RL (m)	SG ³	QA/QC ⁵	Company	DHEM Survey	PQ (m)	HQ (m)	NQ2 (m)	NQ (m)	BQ (m)	RC (m)
MND22	491681	7670423	-70	165	267.1	210		N/A	PD	No				135.2		
MND23	491673	7670396	-70	190	700	210.2		15	PD	Yes				580		
MND24	491188	7670818	-70	85	669	211.6	6	13	PD	Yes						
MND25	491671	7670143	-70	0	333	208	3	25	PD	Yes		37.7		259.2		
MND26	491791	7670353	-70	90	231	208.5		9	PD	No				138.8		
MRN06001	491496	7670773	-60	25	459.9	211		9	ВНРВ	No				397.9		
MRN06002	491412	7670092	-70	38	696.4	211		14	BHPB	Yes				658.4		
MRN06003	491771	7669598	-60	355	480.4	210		7	ВНРВ	No				462.4		
MRN06004	492071	7669973	-60	300	816.8	208		19	ВНРВ	No				745		
MRN06005	491571	7669873	-60	22	521.2	208.6		9	ВНРВ	No				497.15		
MRN07001	491021	7670323	-65	90	900.9	212.8	20	8	BHPB	No				831.9		
MRN07002	491151	7670473	-65	90	714.9	212.6		12	ВНРВ	Yes				646.8		
MRN07003B	490725	7670384	-72	90	1157.9	212.7		8	ВНРВ	Yes				1085.1		
MRN07004A	490886	7670583	-72	98	1002.9	212.2		10	ВНРВ	No				956.9		
MRN08001	490330	7670363	-75	83	1338.8	213.2	74	8	BHPB	Yes				1303.3		
MRN08002	490909	7670182	-75	83	756.8	212.3		2	ВНРВ	Yes				711.8		
MRN08002B	490906	7670183	-70	80	897.9	212.3		26	ВНРВ	Yes				829.4		
MRN08003	490528	7670230	-65	83	1306.3	211	82	38	ВНРВ	Yes				1258.7		
MRN11001	491530	7670528	-55	90	150.3	211.6	48	6	RDM	No				102.3		
MRN11003A	491000	7670423	-70	90	739	212.7	112	16	RDM	No				682.3		
MRN12003	490648	7670527	-80	65	1469.5	212.6	140	5	RDM	Yes		465		942.1		
MRN12003B	490648	7670527	-80	65	1317.9	212.6	84	4	RDM	Yes				621.2		
MRN12004	490967	7670728	-80	57	1016.6	211.9	128	23	RDM	Yes		461.9		515.7		
MRN12004B	490967	7670728	-80	57	1281.6	211.9	309	13	RDM	Yes				792.2		
MRN13001	491246	7670935	-90	57	1196.9	211.2	236	14	RDM	Yes	274.9	513.2		377.3		
MRN13002	491378	7671137	-90	50	885.6	210.5	165	17	RDM	No	139.6	731.1				
MRN14001A	491227	7671127	-83	3	839	210.8		N/A	RDM	No	246.4	289.5	300.3			

Hole ID	East ¹	North ¹	Dip°	Azim°	Depth (m)	RL (m)	\$G³	QA/QC ⁵	Company	DHEM Survey	PQ (m)	HQ (m)	NQ2 (m)	NQ (m)	BQ (m)	RC (m)
MRN14002	491282	7671061	-90	47	805.4	210.9	164	14	RDM	No	396.4	333.5	75.5			
MRN14003	491380	7671143	-80	75	525.8	210.5	112	11	RDM	No	194.7	331.1				
MRN14004	491033	7671217	-88	75	1403.1	210.5	75	11	RDM	No	560.8	349.4	492.9			
MRN14004W1	491033	7671217	-88	75	1320	210.5	67	23	MMA	No			759			
MRN14005	491319	7670929	-88	75	778	211.2	83	16	RDM	No	296.6	343.4	138			
MRN14006	491319	7670930	-75	75	567.9	211.2	94	8	RDM	No	170.3	178.6	219			
MRN14007	491378	7671137	-90	50	705.7	210.5	66	9	RDM	No		165.7	540			
MRN14008	491226	7671125	-89	50	925.8	210.8	88	9	RDM	No	362.9	255.8	307.1			
MRN22001	491054	7670728	-77	76	921.7	212.0	87	25	MMA	No		458.2		157		
MRN22001A	491054	7670728	-77	76	801.7	212.0		25	MMA	No	66.4	236.2	121.1	378		
MRN22002	491226	7671127	-80	91	299.8	210.9	10		MMA	No	74.7	225.1				
MRN22002W1	491226	7671127	-80	91	684.7	210.9	41	12	MMA	No			231	219.4		
MRN22002W2	491226	7671127	-80	91	756.7	210.9	62	6	MMA	No			108.6	399.4		
MRN22002W3	491226	7671127	-80	91	759.7	210.9	76	16	MMA	No			459.9			
MRN22003	491101	7670402	-65	95	685	212.8	56	26	MMA	No	62.7	146.8	475.5			
MRN22003W1	491101	7670402	-65	95	659.5	212.8	91	21	MMA	No			89.8	423.1		
MRN22004	491416	7671136	-70	86	435.6	210.5	23	20	MMA	No	56.7	122.7		256.2		
MRN22005	490660	7670736	-80	75	1543.8	212.2	129	34	MMA	Yes	89.9	560.7	893.2			
MRN23001	491331	7670500	-60	79	366	212.4	59	22	MMA	No	51	125.9	47.8	141.3		
MRN23002	491447	7671051	-70	80	421.16	210.4	35	21	MMA	No	44.3	90.3	286.56			
MRN23003	491341	7670883	-65	80	450.9	211.4	57	16	MMA	No	62.7	388.2				
MRN23004	491113	7670662	-80	100	834.8	212.1	83	26	MMA	No	179.6	655.2				
MRN23004W1	491113	7670662	-80	100	193.4	212.1			MMA	No		14.7				
MRN23004W2	491113	7670662	-80	100	720.6	212.1	62	24	MMA	No		542.1				
MRN23005	491423	7670467	-61	83	272.6	211.7	48	26	MMA	No	62.6	210				
MRN23006	491423	7670603	-61	104	299.4	212.1	37	14	MMA	No	68.6	230.8				
MRN23007	491250	7670401	-61	85	450.3	212.2	36	15	MMA	No	89.5	209.9	150.9			
MRN23008	491179	7670269	-60	90	615	212.3	62	16	MMA	No	53	102.4	459.6			

Hole ID	East ¹	North ¹	Dip°	Azim°	Depth (m)	RL (m)	\$G³	QA/QC ⁵	Company	DHEM Survey	PQ (m)	HQ (m)	NQ2 (m)	NQ (m)	BQ (m)	RC (m)
MRN23009	491303	7670202	-60	75	493.4	211.5	60	12	MMA	No	68.8	80.7	343.9			
MRN23010	491309	7670257	-60	70	504.5	212.0	82	14	MMA	No	71.9	50.5	382.1			
MRN23011	491450	7670518	-60	85	270.7	212.0	18	19	MMA	No	95.8	174.9				
MRN23012	491255	7670491	-60	84	460.7	212.5	45	27	MMA	No	72.2	251.3	137.2			
MRN23013	491341	7670445	-60	85	381.7	212.2	60	15	MMA	No	68.7	313				
MRN23014	491341	7670447	-55	69	81.8	212.0			MMA	No	58.4	23.4				
MRN23014A	491340	7670450	-55	69	351.6	212.0	40	20	MMA	No	71.6	280				
MRN23015	491381	7670412	-61	85	300.7	211.6	29	13	MMA	No	71.8	228.9				
MRN23016	491479	7670450	-60	85	201.6	210.8	33	9	MMA	No	53.8	147.8				
MRN23017	491479	7670499	-59	85	201.6	211.7	44	10	MMA	No	59.5	142.1				
MRN23018	491424	7670520	-67	85	300.5	212.0	79	51	MMA	No	68.9	231.6				
MRN23019	491484	7670568	-59	86	198.1	212.0	46	15	MMA	No	71.8	126.3				
MRN23020	491253	7670491	-75	86	537.5	212.6	72	24	MMA	No	71.6	77.8	388.1			
MRN23021	491019	7670218	-61	81	680.9	212.8	67	16	MMA	No	80.6	59.7	540.6			
MRN23022	490945	7670319	-66	81	849.9	212.9	101	27	MMA	No	56.8	65.7	727.4			
VWP01	491461	7670496	-90	1	69.5	212.0		2	MMA	No	69.5					
MNR4	491578	7670821	-60	83	102	211.0			MPI	No						102
MNR5	491627	7670827	-60	83	102	211.0			MPI	No						102

APPENDIX 3 – STARTER ZONE SILVER-LEAD INTERCEPTS

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MND02	W	120	6	104	110	6.3	14
MND02	Е	40	5	164	169	4.4	64
MND02	Е	30	1	177	178	5.1	161
MND02	Е	20	2	196	198	4.9	101
MND03	W	120	7	119	126	5.1	10
MND03	W	100	4	129	133	6.8	15
MND12	W	120	12	196	208	2.8	21
MND12	Е	40	5	263	268	3.5	66
MND12	Е	30	1	291	292	2.7	26
MND12	Е	20	2	319	321	2.1	2
MND14	W	130	9	211	220	4.3	4
MND14	Е	40	2	325	327	4.8	18
MND14	Е	30	3	350	353	1.7	48
MND15	W	130	6	327	333	5.1	19
MND15	W	120	6	335	341	2.5	24
MND15	E	40	4	411	415	2.5	41
MND15	Е	30	4	435	439	0.7	5
MND15	Е	20	2	460	462	2.2	16
MND25	Е	10	5	203	208	4.0	124
MRN06002	Е	10	7	408	415	5.9	167
MRN07001	W	130	3.81	489.94	493.75	2.7	48
MRN07001	W	120	14.48	501	515.48	11.1	133
MRN07001	Е	20	10	662	672	3.7	135
MRN07001	Е	10	3.2	713	716.2	2.1	78
MRN07002	Е	40	22	479	501	4.9	126
MRN07002	Е	30	4	510	514	3.3	151
MRN11003A	W	130	4.05	554.35	558.4	11.5	255
MRN11003A	W	120	5.45	568.25	573.7	6.4	144
MRN11003A	Е	40	3.3	636.5	639.8	4.2	97
MRN11003A	Е	30	4	659.15	663.15	0.7	35
MRN22003	W	130	2.35	434	436.35	18.8	182
MRN22003	W	120	3	442	445	2.0	46
MRN22003	Е	40	2	534	536	7.7	239
MRN22003	Е	30	1	556	557	3.8	148
MRN22003	Е	20	6	595	601	4.4	133
MRN22003	Е	10	1	666	667	3.5	139
MRN22003W1	W	130	9	413	422	8.4	60
MRN22003W1	W	120	1	428	429	0.5	17
MRN22003W1	Е	40	3	517	520	5.0	149
MRN22003W1	Е	30	2	543	545	6.8	238
MRN22003W1	Е	20	1	563	564	3.5	144
MRN22003W1	Е	10	4	620	624	4.5	135

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MRN23001	Е	40	4.5	284.5	289	4.4	90
MRN23001	Е	70	9.2	292.8	302	4.3	225
MRN23001	Е	30	3.45	328	331.45	2.6	70
MRN23005	E	40	16	172	188	7.6	86
MRN23005	Е	60	12	191	203	5.5	241
MRN23005	Е	30	5	235	240	2.2	47
MRN23006	W	130	11.3	87.7	99	2.9	2
MRN23006	Е	40	4	215	219	1.8	40
MRN23007	W	120	6	290	296	4.1	33
MRN23007	Е	40	13	365	378	4.3	174
MRN23008	W	130	5.8	321.5	327.3	8.4	231
MRN23008	W	120	11.8	333.2	345	5.9	69
MRN23008	E	10	4.4	533.8	538.2	4.7	149
MRN23009	W	120	2	226	228	3.3	109
MRN23009	E	10	4	433	437	5.1	162
MRN23010	W	130	4	212	216.7	2.9	25
MRN23010	W	120	6	220	226	3.0	37
MRN23010	Е	40	2	316	318	5.6	235
MRN23010	Е	30	0.77	346	346.77	1.4	58
MRN23010	Е	10	4.2	430.8	435	6.6	327
MRN23011	Е	40	5.1	144.9	150	6.9	121
MRN23011	Е	70	2	157	159	3.0	53
MRN23011	Е	30	3	205	208	3.0	92
MRN23012	Е	40	17.87	373.13	391	4.4	105
MRN23012	Е	30	4.95	404	408.95	3.2	85
MRN23013	Е	40	22.15	264	286.15	4.9	187
MRN23014A	Е	40	20.9	259.4	280.3	4.4	150
MRN23014A	Е	60	5.5	282	287.5	0.9	41
MRN23014A	Е	30	2.3	306.1	308.4	3.7	100
MRN23015	W	120	2	162	164	2.7	19
MRN23015	Е	40	12	232	244	3.0	88
MRN23015	Е	30	2	252	254	13.4	540
MRN23016	Е	40	22.8	111.6	134.4	5.8	138
MRN23017	Е	40	4.65	109.35	114	7.2	132
MRN23017	Е	60	5.71	135	140.71	2.2	68
MRN23018	E	40	3.22	197	200.22	5.4	115
MRN23018	E	70	12	206	218	3.5	81
MRN23018	E	30	4.77	256	260.77	2.6	65
MRN23019	E	40	5	122	127	5.3	97
MRN23020	E	40	20.5	456.5	477	4.5	96
MRN23020	E	30	5.7	492	497.7	2.1	55
MRN23021	W	120	2.83	472	474.83	0.7	28
MRN23021	Е	10	4.55	653.35	657.9	6.2	200

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MRN23022	W	130	1.5	592.5	594	5.3	89
MRN23022	W	120	8.4	595.6	604	17.1	112
MRN23022	W	110	24.9	626	650.9	4.4	69

APPENDIX 4 – OUTSIDE THE STARTER ZONE SILVER-LEAD INTERCEPTS

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MND01	Е	EO	0.6	132.1	132.7	11.7	220
MND01	Е	E1	6.4	139	145.4	2.1	57
MND04	W	W-3	2	119	121	4.1	37
MND04	Е	EO	2	164	166	3.4	118
MND04	Е	E1	7	176	183	3.2	47
MND04	Е	E2	2	191	193	2.2	41
MND04	W	W-4	11			4.5	70
MND07	W	W-4	2	135	137	2	4
MND07	W	W-3	2.4	147.6	150	7	96
MND07	W	W0	2.8	168.2	171	2.1	16
MND07	W	W1	4.3	173.7	178	2.4	18
MND07	W	W2	2.7	184.3	187	4.4	40
MND07	Е	EO	10.9	248.2	259.1	6.8	57
MND07	Е	E1	4	274.2	278.2	6.1	97
MND07	Е	E2.2	2	280.2	282.2	9	182
MND07	W	Mŝ	4			4.2	27
MND10	W	W-4	9	241	250	3.4	8
MND10	W	W-3	2	254	256	2.4	11
MND10	W	WO	6	284	290	2.4	2
MND10	W	W2	2	297	299	2.6	3
MND10	Е	E-1	1	377	378	2.7	64
MND10	Е	EO	1	381	382	4.8	100
MND10	Е	E2.2	1	405	406	2.7	54
MND10	W	W3	2			2.3	2
MND10	W	Mŝ	6			3.5	25
MND21	W	W-4	8	402	410	2.3	30
MND21	W	W-3	18	418	436	3.2	2
MND21	W	W0	26	446	472	4.9	5
MND21	Е	E1	6	624	630	2.9	60
MND24	W	W2?	2	472	474	1.1	11
MRN06001	Е	E2	4	240	244	4.1	55
MRN06001	W	W-4	7			6	52
MRN06001	W	W-3	15.4			2.4	63
MRN06001	W	M0s	2			10.7	123
MRN07003B	W	W0	6.11	832.06	838.17	7.8	84
MRN07003B	W	W2	4.11	849.89	854	1.9	72

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MRN07003B	Е	EO	2	941	943	2.3	145
MRN07003B	Е	E2	4	974	978	1.3	46
MRN07004A	W	W0	3.95	738.02	741.97	4.6	27
MRN07004A	W	W1	0.33	750.15	750.48	5	210
MRN07004A	W	W2	2	762	764	4.8	78
MRN07004A	Е	E0	3	820	823	2.7	90
MRN07004A	Е	E1	4.66	827	831.66	2.5	222
MRN08001	W	W-99	1.1			5.3	134
MRN08001	W	W-99	0.8			4.1	95
MRN08003	Е	E2	0.8	1225.8	1226.6	1.4	67
MRN12003	W	W0	6.2	1244.9	1251.1	6.4	36
MRN12003	W	W2	2.5	1263.5	1266	3.6	33
MRN12003	Е	EO	5.25	1297.6	1302.85	2.6	97
MRN12003B	W	W-1	2.65	1143.2	1145.85	1.9	28
MRN12003B	W	W0	2.95	1168.35	1171.3	10.1	154
MRN12003B	W	W2.1	3.53	1201	1204.53	7.2	59
MRN12003B	Е	EO	15.95	1227.8	1243.75	4.8	174
MRN12003B	Е	E1	1.8	1262	1263.8	2.9	129
MRN12003B	Е	E2	1.15	1272.9	1274.05	4.3	77
MRN12004	W	W-4	10	781	791	1.7	28
MRN12004	W	W-3	4.4	799	803.4	2.9	6
MRN12004	W	W0	17.4	811	828.4	2.9	5
MRN12004	Е	El	2.5	954	956.5	4.9	133
MRN12004B	W	W-3	6.65	912	918.65	8.5	108
MRN12004B	W	W-2	2	939.2	941.2	6	46
MRN12004B	W	W-1	2.1	957.2	959.3	9	123
MRN12004B	W	W0	7.7	963.1	970.8	10.5	87
MRN12004B	W	W1	3.5	974	977.5	3.9	33
MRN12004B	W	W2	15.3	987.7	1003	6.6	28
MRN12004B	Е	E1	12.15	1210	1222.15	5.3	61
MRN12004B	Е	E2	6.65	1228.3	1234.95	8.4	296
MRN12004B	W	W-4	8.3			2.8	28
MRN12004B	W	W3	2.85			11.3	80
MRN13001	Е	E2	2.55	967.45	970	4.9	80
MRN13001	W	W-5	2			3.2	52
MRN13002	Е	E-3	2.3	459.6	461.9	9.8	277
MRN13002	Е	E-2	13.7	483.3	497	7.9	230
MRN13002	Е	E50	17.5	514	531.5	6.6	154
MRN13002	Е	EO	15.1	548.9	564	5.8	134
MRN13002	Е	E2N	7.3	577.7	585	2.4	53
MRN14002	E	E-3	2.1	601.3	603.4	27.2	303
MRN14002	Е	E-2	17.45	608.4	625.85	6.1	46
MRN14002	Е	E-5	3.45	639.45	642.9	4.8	51

Hole ID	Zone	Lens	Interval (m)	From (m)	To (m)	Lead %	Silver g/t
MRN14002	Е	E-1	8.4	645.2	653.6	6.4	69
MRN14002	Е	E50	26.9	662.5	689.4	2.7	18
MRN14002	Е	EO	7.15	698.2	705.35	5.1	96
MRN14002	Е	E2N	9.95	724.3	734.25	4.2	80
MRN14002	Е	E-99	3			1.9	46
MRN14002	Е	E-1	0				
MRN14002	Е	E50	0				
MRN14002	Е	E99	2.8			3.5	72
MRN14002	Е	E99	1.75			2.6	55
MRN14002	Е	E99	1.9			3.2	55
MRN14003	E	E2	2.7	469.3	472	6.2	158
MRN14004	Е	E-2	3.1	1241	1244.1	8.6	212
MRN14005	Е	E-1	1	590.85	591.85	1	25
MRN14005	Е	EO	4.45	597.4	601.85	3.4	59
MRN14005	Е	E1	8.6	644.1	652.7	1.5	31
MRN14005	Е	E2	2.3	655.85	658.15	7.8	96
MRN14006	Е	E-2	1	445	446	1.5	11
MRN14006	Е	E-1	2.65	456.55	459.2	4.1	57
MRN14006	Е	EO	4.45	465.8	470.25	2.3	27
MRN14006	Е	E1	3.4	472	475.4	4.1	56
MRN14006	Е	E2	1.3	487	488.3	4	79
MRN14006	Е	E-99	0.8			6.5	89
MRN14006	Е	E-3	0.8			3.4	59
MRN14007	Е	E50	10.1	579.4	589.5	8.5	213
MRN14007	Е	E2	0.7	594	594.7	7.6	173
MRN14008	Е	E-2	24.7	769.1	793.8	4.8	90
MRN14008	Е	E50	3.1	799.4	802.5	3.5	123
MRN14008	Е	EO	4	849	853	7	140
MRN14008	Е	E2N	6.75	857.1	863.85	6.8	148

APPENDIX 5 – COPPER-GOLD COMPOSITES

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MND02	100	88	90	2	1.56	0.69	7.3
MND02	100	90	92	2	1.15	0.34	12.0
MND02	100	92	94	2	0.19	0.08	1.0
MND02	100	94	95	1	0.19	0.08	1.0
MND14	100	235	236	1	0.01	0.60	1.0
MND14	100	236	238	2	0.03	0.41	2.5
MND14	100	238	240	2	0.79	0.35	5.5
MND14	100	240	242	2	1.84	0.22	18.0
MND14	100	242	244	2	0.13	0.18	8.0
MND14	100	244	246	2	0.29	2.43	3.0
MND14	100	246	247	1	2.10	0.39	9.0
MND21	100	490	492	2	0.05	0.29	4.3
MND21	100	492	494	2	0.47	0.56	4.7
MND21	100	494	496	2	0.14	0.25	1.3
MND21	100	496	498	2	0.87	0.15	2.3
MND21	100	498	500	2	0.17	0.25	1.9
MND24	100	452	454	2	0.03	0.03	2.5
MND24	100	454	456	2	0.04	0.01	2.2
MND24	100	456	458	2	1.64	0.02	12.5
MND24	100	458	460	2	0.65	0.02	1.7
MND24	100	460	462	2	0.26	0.02	2.2
MND24	100	462	464	2	0.02	0.01	0.8
MRN12004	100	841	842	1	0.09	0.03	2.4
MRN12004	100	842	844	2	0.21	0.27	5.5
MRN12004	100	844	846	2	0.54	0.02	4.9
MRN12004	100	846	848	2	1.48	0.02	7.2
MRN12004	100	848	850	2	2.23	0.04	6.7
MRN12004	100	850	852	2	0.23	0.06	3.1
MRN12004	100	852	854	2	1.54	0.34	14.6
MRN12004	100	854	856	2	3.68	2.86	33.7
MRN12004	100	856	858	2	1.75	0.89	43.4
MRN12004	100	858	860	2	1.43	1.06	10.3
MRN12004	100	860	862	2	0.95	0.14	10.9
MRN12004	100	862	864	2	0.61	0.10	4.7
MRN12004	100	864	866.2	2.2	0.30	0.06	1.5
MRN22001	100	718.5	720	1.5	0.17	0.03	2.6
MRN22001	100	720	722	2	0.43	0.05	2.6
MRN22001	100	722	724	2	0.18	0.01	2.4
MRN22001	100	724	726	2	0.18	0.01	2.8
MRN22001	100	726	728	2	0.28	0.01	2.5
MRN22001	100	728	730	2	0.53	0.01	3.5
MRN22001	100	730	732	2	0.19	0.01	4.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN22001	100	732	734	2	0.56	0.02	8.5
MRN22001	100	734	736	2	0.62	0.01	8.2
MRN22001	100	736	738	2	0.42	0.06	8.7
MRN22001	100	738	740	2	0.56	0.39	1.2
MRN22001	100	740	742	2	0.03	0.45	1.3
MRN22001	100	742	744	2	0.01	0.54	5.2
MRN22001	100	744	746	2	0.02	1.33	16.4
MRN22001	100	746	748	2	1.62	4.84	15.1
MRN22001	100	748	750	2	3.75	2.74	6.9
MRN22001	100	750	752	2	0.85	0.19	1.6
MRN22001	100	752	754	2	0.29	0.86	2.5
MRN22001	100	754	755	1	4.61	1.05	2.6
MRN22001A	100	655	656	1	0.04	0.01	0.8
MRN22001A	100	656	658	2	0.48	0.02	1.7
MRN22001A	100	658	660	2	0.16	0.07	3.5
MRN22001A	100	660	662	2	0.29	2.04	3.1
MRN22001A	100	667	668	1	0.26	1.82	6.9
MRN22001A	100	668	670	2	0.35	0.74	7.4
MRN22001A	100	670	672	2	0.60	0.94	1.9
MRN22001A	100	672	673	1	0.04	0.67	0.7
MRN23001	100	183.8	186	2.2	1.11	0.15	13.3
MRN23001	100	186	188.1	2.1	0.03	1.74	3.8
MRN23001	100	208.7	210	1.3	0.07	3.46	3.9
MRN23001	100	210	212	2	0.13	0.16	6.0
MRN23001	100	212	214	2	1.05	1.06	18.2
MRN23001	100	214	216	2	0.34	0.29	13.1
MRN23001	100	216	218	2	0.52	0.67	16.0
MRN23001	100	218	220	2	0.03	0.08	0.9
MRN23005	100	101	102	1	0.05	0.17	8.6
MRN23005	100	102	104	2	0.83	0.67	7.2
MRN23005	100	104	106	2	0.09	0.09	2.8
MRN23006	100	129	130	1	0.01	0.46	3.0
MRN23006	100	130	132	2	0.29	1.09	8.9
MRN23011	100	88.5	89	0.5	0.11	0.02	6.3
MRN23013	100	187	188	1	0.02	0.68	8.1
MRN23013	100	188	190	2	0.13	0.12	6.7
MRN23013	100	190	192	2	0.77	0.31	45.2
MRN23013	100	192	194	2	1.15	0.39	17.1
MRN23013	100	194	196	2	0.37	0.17	3.0
MRN23013	100	196	198	2	0.50	0.40	8.1
MRN23013	100	198	200	2	2.93	1.49	93.9
MRN23013	100	200	202	2	0.02	0.05	16.4
MRN23013	100	202	203	1	0.01	0.02	39.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN23013	100	209	210	1	0.25	0.38	3.2
MRN23013	100	210	211	1	0.08	0.05	1.4
MRN23014A	100	178	180	2	0.49	0.43	3.0
MRN23014A	100	180	182	2	0.27	0.30	4.8
MRN23014A	100	182	184	2	0.17	0.22	26.0
MRN23014A	100	184	186	2	0.22	0.09	13.3
MRN23014A	100	186	188	2	0.33	0.05	6.8
MRN23014A	100	188	190	2	0.40	0.44	11.6
MRN23014A	100	190	192	2	0.49	0.27	15.1
MRN23014A	100	192	194	2	0.13	0.10	3.3
MRN23014A	100	194	196	2	0.23	0.20	4.0
MRN23014A	100	196	198	2	0.11	0.06	2.4
MRN23014A	100	198	200	2	0.18	0.11	2.0
MRN23014A	100	200	202	2	0.37	0.25	5.8
MRN23014A	100	202	203	1	0.49	0.12	11.2
MRN23015	100	149	150	1	0.01	0.05	1.6
MRN23015	100	150	152	2	0.62	0.17	35.1
MRN23015	100	152	154	2	0.63	0.09	18.2
MRN23015	100	154	156	2	0.14	0.02	5.5
MRN23015	100	156	158	2	0.02	0.01	7.1
MRN23015	100	158	160	2	0.22	0.04	15.0
MRN23015	100	160	162	2	0.29	0.08	46.0
MRN23015	100	162	163	1	0.05	0.06	23.4
MRN23016	100	57	58	1	0.03	0.01	19.9
MRN23016	100	58	60	2	0.26	0.22	18.1
MRN23016	100	60	62	2	0.53	0.35	13.2
MRN23018	100	104	106	2	0.10	2.11	5.5
MRN23018	100	106	108	2	0.48	1.16	9.9
MRN23018	100	108	110	2	0.05	1.29	11.9
MRN23018	100	110	112	2	1.50	2.47	6.0
MRN23018	100	112	114	2	3.37	0.49	7.5
MRN23018	100	114	116	2	1.01	0.26	3.5
MRN23018	100	116	118	2	0.17	0.45	1.7
MRN23018	100	118	120	2	0.06	0.02	3.2
MRN23018	100	124.4	126	1.6	0.32	0.14	7.1
MRN23018	100	126	127.25	1.25	0.52	0.24	5.8
MRN23018	100	131	132	1	0.02	0.11	3.2
MRN23019	100	59.5	62	2.5	0.06	0.06	0.6
MRN23019	100	62	64	2	0.68	0.43	0.7
MRN23019	100	64	66	2	0.78	0.52	1.9
MRN23019	100	66	68	2	0.52	0.38	6.0
MRN23019	100	68	70.65	2.65	0.07	0.09	3.6
MND02	200	79	80	1	0.08	0.05	1.0

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MND02	200	80	82	2	0.08	0.05	1.0
MND02	200	82	84	2	0.39	0.46	1.5
MND02	200	84	86	2	0.71	0.42	2.5
MND02	200	86	88	2	1.77	0.47	4.8
MND12	200	183	184	1	0.41	0.20	3.0
MND12	200	184	186	2	1.11	0.79	5.0
MND12	200	186	188	2	3.45	2.12	12.5
MND12	200	188	190	2	0.89	0.35	2.5
MND12	200	190	192	2	0.87	0.83	1.8
MND12	200	192	194	2	0.53	0.51	2.5
MND12	200	194	196	2	2.22	0.97	5.0
MND14	200	247	248	1	0.04	0.05	2.0
MND14	200	248	250	2	0.03	0.03	4.3
MND14	200	250	252	2	2.03	0.51	8.5
MND14	200	252	254	2	4.77	0.57	20.0
MND14	200	254	256	2	0.68	0.06	2.3
MND14	200	256	258	2	0.07	0.05	1.0
MND14	200	258	259	1	0.01	0.01	1.0
MND14	200	271	272	1	0.01	0.01	1.0
MND21	200	500	502	2	1.52	0.69	6.9
MND21	200	502	504	2	0.28	0.13	1.7
MND21	200	504	506	2	0.21	0.43	1.8
MND21	200	506	508	2	0.93	1.01	4.9
MND21	200	508	510	2	0.54	0.34	2.4
MND21	200	510	512	2	0.43	0.27	2.1
MND21	200	512	514	2	0.53	0.49	2.4
MND21	200	514	516	2	0.27	0.17	1.4
MND21	200	516	518	2	0.67	0.59	2.4
MND21	200	518	520	2	1.82	0.55	2.6
MND21	200	520	522	2	0.37	0.28	1.3
MND21	200	522	524	2	0.35	0.17	1.2
MND21	200	524	526	2	0.01	0.05	0.3
MND7	200	184.3	186	1.7	0.13	0.02	14.2
MND7	200	186	187	1	0.23	0.00	6.0
MRN12004	200	866.2	868	1.8	0.67	0.47	4.1
MRN12004	200	868	870.9	2.9	2.00	1.73	10.3
MRN22001	200	755	756	1	1.12	0.50	7.7
MRN22001	200	756	758	2	1.02	0.45	2.4
MRN22001	200	758	760	2	2.00	1.27	5.1
MRN22001	200	760	762	2	1.10	1.25	2.2
MRN22001	200	762	764	2	1.37	1.02	3.3
MRN22001	200	764	766	2	2.76	2.07	4.7
MRN22001	200	766	768	2	0.08	0.04	0.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN22001	200	768	770	2	0.19	0.22	0.3
MRN22001	200	770	772	2	0.17	0.07	0.4
MRN22001A	200	673	673.4	0.4	0.79	0.21	2.1
MRN22001A	200	673.7	676	2.3	0.53	0.31	3.4
MRN22001A	200	676	678	2	0.90	0.56	1.8
MRN22001A	200	678	680	2	0.63	0.16	1.1
MRN22001A	200	680	682	2	0.12	0.02	0.3
MRN23001	200	178	180	2	0.29	0.55	4.1
MRN23001	200	180	182	2	0.39	0.46	5.9
MRN23001	200	182	183.8	1.8	0.80	1.28	21.0
MRN23005	200	92	94	2	0.02	0.05	0.3
MRN23005	200	94	96	2	0.10	0.07	0.6
MRN23005	200	96	98	2	2.89	0.61	14.6
MRN23005	200	98	100	2	0.37	0.22	1.8
MRN23005	200	100	101	1	0.72	0.18	7.5
MRN23006	200	132	134	2	0.32	0.17	2.6
MRN23006	200	134	136	2	0.05	0.02	0.3
MRN23006	200	136	138	2	0.85	0.17	4.8
MRN23006	200	138	140	2	0.18	0.02	1.2
MRN23007	200	267	268	1	0.76	1.11	2.9
MRN23007	200	268	270	2	1.65	6.94	7.4
MRN23007	200	270	272	2	3.78	1.03	7.2
MRN23007	200	272	274	2	0.74	0.55	2.1
MRN23007	200	274	276	2	0.83	1.01	4.0
MRN23007	200	276	278	2	0.32	0.10	11.5
MRN23007	200	278	280	2	0.29	0.08	9.8
MRN23007	200	280	282	2	0.18	0.02	8.3
MRN23007	200	282	284	2	0.10	0.05	13.1
MRN23007	200	284	285	1	0.51	0.08	19.5
MRN23007	200	297	298	1	0.12	0.02	3.7
MRN23011	200	90.2	92	1.8	0.47	0.12	10.7
MRN23011	200	92	94	2	0.26	0.08	3.4
MRN23011	200	94	96	2	0.52	0.15	16.8
MRN23011	200	96	98	2	0.20	0.14	6.4
MRN23012	200	257.48	260	2.52	0.09	0.07	0.5
MRN23012	200	260	262	2	0.25	0.12	1.5
MRN23012	200	262	264	2	0.25	0.77	1.8
MRN23012	200	264	266	2	0.39	0.22	2.3
MRN23012	200	266	268	2	0.13	0.03	6.0
MRN23012	200	283	284	1	0.41	0.08	3.2
MRN23012	200	284	286	2	0.28	0.38	3.7
MRN23012	200	286	287	1	0.10	0.05	0.4
MRN23012	200	289	290	1	0.26	0.18	1.4

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN23012	200	290	292	2	0.30	0.19	2.5
MRN23013	200	179	180	1	0.18	0.08	6.0
MRN23013	200	180	182	2	0.27	0.11	18.0
MRN23013	200	182	183	1	0.08	0.15	9.5
MRN23014A	200	177	178	1	0.13	0.05	0.6
MRN23015	200	125	126	1	0.29	0.24	1.1
MRN23015	200	126	128	2	0.31	0.23	1.1
MRN23015	200	128	130	2	0.20	0.15	0.7
MRN23015	200	130	132	2	0.24	0.20	0.7
MRN23015	200	132	134	2	0.20	0.19	1.7
MRN23015	200	134	136	2	0.21	0.59	23.6
MRN23015	200	136	138	2	0.76	1.66	8.8
MRN23015	200	138	140	2	0.12	0.24	6.6
MRN23015	200	140	142	2	0.63	0.20	11.1
MRN23015	200	142	144	2	0.14	0.10	4.4
MRN23015	200	144	146	2	3.09	1.18	10.6
MRN23015	200	146	148	2	2.05	1.88	12.4
MRN23015	200	148	149	1	1.24	0.49	57.3
MRN23016	200	69	70	1	0.15	0.01	5.3
MRN23018	200	132	134	2	0.33	0.07	4.0
MRN23018	200	134	136	2	0.59	0.09	3.2
MRN23018	200	136	138	2	0.22	0.10	1.4
MRN23018	200	138	140	2	0.15	0.02	0.6
MRN23018	200	140	142	2	0.15	0.04	0.7
MRN23018	200	142	143	1	0.40	0.12	2.2
MND10	300	323	324	1	0.01	0.01	1.0
MND10	300	324	326	2	0.87	0.15	1.8
MND10	300	326	328	2	0.04	0.01	9.5
MND10	300	346	348	2	0.12	0.28	1.0
MND10	300	348	350	2	0.79	0.25	1.8
MND10	300	350	352	2	0.28	0.18	1.0
MND10	300	352	353	1	0.10	0.10	1.0
MND12	300	167	168	1	0.08	0.29	1.0
MND12	300	181	182	1	0.10	0.17	6.0
MND12	300	200	201	1	0.11	0.06	12.5
MND14	300	277	278	1	0.28	0.12	1.0
MND14	300	278	279	1	1.16	0.31	3.0
MND14	300	280	281	1	0.05	0.17	2.0
MND14	300	290	292	2	0.02	0.01	1.0
MND15	300	322	324	2	0.51	2.43	11.5
MND15	300	324	326	2	0.05	0.02	1.0
MND21	300	584	586	2	0.13	0.03	0.3
MND21	300	586	588	2	0.28	0.04	0.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MND21	300	588	590	2	0.11	0.01	0.3
MND21	300	590	592	2	0.36	0.06	0.6
MND21	300	592	594	2	0.27	0.02	0.9
MND21	300	594	596	2	0.31	0.03	3.2
MND21	300	596	598	2	0.63	0.03	1.2
MND21	300	598	600	2	0.14	0.01	0.3
MND21	300	600	602	2	0.22	0.04	0.6
MND24	300	516	518	2	0.10	0.04	0.3
MND24	300	518	520	2	0.13	0.04	0.6
MND24	300	520	522	2	0.53	0.09	0.8
MND24	300	522	524	2	0.77	0.08	1.2
MND24	300	524	526	2	0.74	0.09	1.3
MND24	300	526	528	2	0.21	0.03	0.3
MND24	300	528	530	2	0.19	0.03	0.3
MND24	300	530	532	2	0.26	0.06	0.3
MND24	300	532	534	2	0.17	0.02	0.3
MND7	300	187	188	1	0.09	0.00	3.0
MND7	300	188	190	2	2.05	3.38	22.5
MND7	300	190	192	2	0.28	0.13	3.0
MND7	300	192	193	1	0.19	0.00	11.0
MRN07002	300	398	400	2	0.29	0.30	2.0
MRN07002	300	400	402	2	0.06	0.04	2.0
MRN12004	300	886.6	888.6	2	0.04	0.03	0.3
MRN12004	300	890.6	892	1.4	0.22	0.37	0.4
MRN12004	300	892	894	2	0.21	0.32	0.4
MRN12004	300	894	896	2	0.14	0.14	0.3
MRN12004	300	896	898.6	2.6	0.13	0.05	0.3
MRN12004	300	906.6	908	1.4	0.10	0.03	0.3
MRN12004	300	908	910.6	2.6	0.22	0.10	1.2
MRN12004	300	921	922	1	0.38	0.11	0.7
MRN12004	300	922	924	2	0.22	0.04	0.3
MRN12004	300	924	926	2	0.19	0.03	0.3
MRN12004	300	935	936	1	0.07	0.02	0.3
MRN12004	300	936	938	2	0.12	0.01	0.5
MRN12004	300	938	940	2	0.52	0.03	2.2
MRN12004	300	940	942	2	1.25	0.06	4.5
MRN12004	300	942	944	2	0.41	0.04	2.3
MRN12004	300	944	946	2	0.08	0.01	1.7
MRN12004B	300	1009	1010	1	0.04	0.09	61.4
MRN12004B	300	1010	1011.8	1.8	0.08	0.08	5.8
MRN12004B	300	1022	1024	2	0.42	0.36	20.7
MRN12004B	300	1024	1026	2	0.10	0.09	3.2
MRN12004B	300	1026	1028	2	0.30	0.05	8.5

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN12004B	300	1028	1029	1	0.33	0.02	6.5
MRN12004B	300	1076	1078	2	0.07	0.07	7.2
MRN12004B	300	1078	1080	2	0.02		0.5
MRN12004B	300	1080	1082	2	0.00		0.4
MRN12004B	300	1082	1084	2	0.01	0.01	13.7
MRN12004B	300	1084	1086	2	0.02	0.01	25.5
MRN12004B	300	1086	1088	2	0.53	0.06	17.1
MRN12004B	300	1088	1090	2	0.76	0.12	14.9
MRN12004B	300	1090	1092	2	0.17	0.02	11.5
MRN12004B	300	1092	1094	2	0.16	0.01	5.0
MRN12004B	300	1097	1098	1	0.17	0.06	2.1
MRN12004B	300	1098	1100	2	0.28	0.04	3.0
MRN12004B	300	1100	1101	1	0.39	0.05	4.1
MRN12004B	300	1189	1190	1	0.26	0.02	1.4
MRN12004B	300	1190	1192	2	0.14	0.01	0.8
MRN12004B	300	1192	1194	2	0.29	0.03	1.9
MRN12004B	300	1194	1196	2	0.27	0.05	2.8
MRN12004B	300	1196	1198	2	0.37	0.03	3.4
MRN12004B	300	1198	1200	2	0.86	0.15	5.9
MRN12004B	300	1200	1202	2	0.47	0.01	3.2
MRN12004B	300	1202	1204	2	0.21	0.01	1.9
MRN12004B	300	1204	1206	2	0.57	0.02	3.7
MRN12004B	300	1206	1208	2	0.44	0.05	3.1
MRN12004B	300	1208	1210	2	0.45	0.12	11.8
MRN12004B	300	1210	1211	1	0.04	0.02	105.0
MRN13001	300	858.7	860	1.3	0.04	0.01	0.2
MRN13001	300	860	861	1	0.10	0.02	0.3
MRN13001	300	942	944	2	0.48	0.06	0.3
MRN13001	300	944	946	2	0.46	0.21	0.3
MRN13001	300	946	948	2	0.27	0.07	0.2
MRN13001	300	948	950	2	0.26	0.21	0.7
MRN13001	300	950	952	2	0.32	0.39	0.4
MRN13001	300	952	954	2	0.18	0.09	0.2
MRN13001	300	968	970	2	0.30	0.71	73.6
MRN13001	300	970	972	2	0.15	0.06	1.7
MRN13001	300	972	974	2	0.24	0.04	0.9
MRN14002	300	749.5	752	2.5	0.24	0.15	56.2
MRN14002	300	752	753.5	1.5	0.21	0.01	2.2
MRN14004	300	1254.4	1256	1.6	0.18	0.01	0.2
MRN14004	300	1256	1258	2	0.27	0.01	0.3
MRN14004	300	1258	1260	2	0.67	0.06	0.5
MRN14004	300	1260	1262	2	0.20	0.03	0.1
MRN14004	300	1262	1264	2	0.20	0.01	0.1

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN14004	300	1264	1266	2	0.45	0.03	0.1
MRN14004	300	1266	1268	2	0.40	0.03	0.1
MRN14004	300	1268	1270	2	0.23	0.03	0.1
MRN14004	300	1270	1272	2	0.28	0.02	0.1
MRN14004	300	1272	1274	2	0.21	0.01	0.0
MRN14004	300	1274	1276	2	0.09	0.01	0.1
MRN14004	300	1276	1278	2	0.46	0.01	0.1
MRN14004	300	1278	1280	2	0.45	0.02	0.1
MRN14004	300	1280	1282	2	0.28	0.03	0.2
MRN14004	300	1282	1284	2	0.18	0.02	0.1
MRN14004	300	1284	1286	2	0.03	0.01	0.1
MRN14004	300	1286	1288	2	0.05	0.01	0.5
MRN14004	300	1288	1290	2	0.29	0.03	0.2
MRN14004	300	1290	1292	2	0.37	0.03	0.2
MRN14004	300	1292	1294	2	1.57	0.04	0.3
MRN14004	300	1294	1296.5	2.5	0.46	0.04	0.2
MRN14004W1	300	1069	1070	1	0.05	0.01	7.2
MRN14004W1	300	1070	1072	2	0.11	0.01	8.2
MRN14004W1	300	1072	1073	1	0.05	0.01	3.4
MRN14004W1	300	1084	1086	2	0.28	0.06	20.6
MRN14004W1	300	1086	1088	2	0.39	0.04	9.6
MRN14004W1	300	1088	1090	2	0.09	0.02	3.1
MRN14004W1	300	1155	1156	1	0.02	0.01	0.2
MRN14004W1	300	1156	1158	2	0.19	0.12	1.2
MRN14004W1	300	1158	1160	2	1.34	1.31	8.5
MRN14004W1	300	1160	1162	2	1.44	0.91	9.4
MRN14004W1	300	1162	1164	2	1.10	0.19	6.3
MRN14004W1	300	1164	1166	2	0.03	0.01	0.8
MRN14004W1	300	1166	1167	1	0.06	0.01	0.6
MRN14004W1	300	1173	1174	1	0.57	0.12	1.4
MRN14004W1	300	1174	1176	2	0.31	0.43	0.9
MRN14004W1	300	1194	1196	2	0.08	0.01	0.1
MRN14004W1	300	1196	1197	1	0.04	0.01	0.1
MRN14004W1	300	1213	1214	1	0.09	0.03	1.0
MRN14004W1	300	1214	1216	2	0.37	0.17	1.4
MRN14004W1	300	1216	1218	2	0.59	0.33	0.7
MRN14004W1	300	1218	1220	2	0.29	0.20	0.4
MRN14004W1	300	1220	1222	2	0.08	0.06	0.1
MRN14004W1	300	1222	1224	2	0.45	0.51	0.5
MRN14004W1	300	1224	1226	2	0.47	0.32	0.6
MRN14004W1	300	1226	1228	2	0.09	0.03	1.2
MRN14004W1	300	1228	1230	2	0.19	0.07	0.5
MRN14004W1	300	1230	1232	2	0.09	0.11	0.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN14004W1	300	1232	1234	2	0.12	0.05	0.2
MRN14004W1	300	1234	1236	2	0.15	0.09	0.2
MRN14004W1	300	1236	1238	2	0.10	0.14	0.1
MRN14004W1	300	1238	1240	2	0.07	0.08	0.2
MRN14004W1	300	1240	1242	2	0.43	0.33	0.3
MRN14004W1	300	1242	1244	2	0.51	0.67	0.4
MRN14004W1	300	1244	1246	2	0.22	0.18	0.1
MRN14004W1	300	1246	1248	2	0.59	0.65	0.3
MRN14004W1	300	1248	1250	2	0.15	0.11	0.1
MRN14004W1	300	1250	1252	2	0.07	0.04	0.1
MRN14004W1	300	1252	1254	2	0.26	0.03	0.1
MRN14004W1	300	1254	1256	2	0.19	0.02	0.1
MRN14004W1	300	1256	1258	2	0.13	0.01	0.1
MRN14004W1	300	1258	1260	2	0.26	0.03	0.2
MRN14004W1	300	1260	1262	2	0.50	0.01	0.3
MRN14004W1	300	1262	1264	2	0.54	0.15	0.3
MRN14004W1	300	1264	1266	2	0.07	0.01	0.1
MRN14004W1	300	1266	1268	2	0.06	0.01	0.1
MRN14004W1	300	1268	1270	2	0.12	0.01	0.2
MRN14004W1	300	1270	1272	2	0.48	0.01	0.4
MRN14004W1	300	1272	1274	2	0.20	0.01	0.3
MRN14004W1	300	1274	1276	2	0.28	0.01	0.5
MRN14004W1	300	1276	1278	2	0.47	0.02	0.9
MRN14004W1	300	1278	1280	2	0.28	0.04	0.6
MRN14008	300	859	860	1	0.14	0.08	242.0
MRN14008	300	860	862	2	0.28	0.07	99.7
MRN14008	300	862	864	2	0.36	0.05	115.8
MRN14008	300	864	866	2	0.52	0.02	28.0
MRN14008	300	866	867	1	0.17	0.37	41.7
MRN22001	300	787	788	1	0.24	0.05	4.1
MRN22001	300	788	790	2	0.38	0.46	1.5
MRN22001	300	790	792	2	0.10	0.10	0.4
MRN22001	300	797	798	1	0.17	0.19	0.3
MRN22001	300	814	816	2	0.15	0.09	0.3
MRN22001	300	816	818	2	0.10	0.05	0.3
MRN22001	300	818	820	2	0.13	0.13	0.3
MRN22001	300	820	822	2	0.10	0.11	0.3
MRN22001	300	822	824	2	0.40	0.11	0.7
MRN22001	300	824	826	2	0.31	0.12	0.4
MRN22001	300	826	828	2	0.51	0.11	0.9
MRN22001	300	833	834	1	0.10	0.03	0.3
MRN22001	300	834	836	2	0.24	0.15	0.3
MRN22001	300	836	838	2	0.38	0.05	0.4

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN22001	300	838	840	2	0.28	0.06	0.4
MRN22001	300	840	841	1	0.11	0.03	1.1
MRN22001	300	864	866	2	0.15	0.08	5.7
MRN22001	300	866	867.8	1.8	0.58	0.05	12.9
MRN22001A	300	687	688	1	0.29	0.07	0.5
MRN22001A	300	688	690	2	0.22	0.05	0.3
MRN22001A	300	690	692.85	2.85	0.36	0.05	0.5
MRN22001A	300	718	720	2	0.35	0.39	1.1
MRN22001A	300	720	722	2	0.19	0.04	0.4
MRN22001A	300	722	724	2	0.26	0.06	0.4
MRN22001A	300	724	726	2	0.17	0.15	0.3
MRN22001A	300	726	728	2	0.51	0.16	0.6
MRN22001A	300	728	730	2	0.12	0.03	0.3
MRN22001A	300	730	732	2	0.17	0.03	0.3
MRN22001A	300	732	734	2	0.14	0.06	0.3
MRN22001A	300	734	736	2	0.09	0.03	0.3
MRN22001A	300	736	738	2	0.17	0.05	0.3
MRN22001A	300	747	748	1	0.31	0.21	1.0
MRN22001A	300	748	750	2	0.21	0.04	0.6
MRN22001A	300	750	752	2	0.26	0.04	0.7
MRN22001A	300	752	754	2	0.14	0.02	0.4
MRN22001A	300	754	756	2	0.22	0.03	0.9
MRN22001A	300	756	758	2	0.29	0.04	1.0
MRN22001A	300	758	759	1	0.13	0.01	0.5
MRN22003	300	425	426	1	0.01	0.01	0.3
MRN22003	300	431	432	1	0.03	0.01	0.4
MRN22003	300	432	433	1	0.03	0.01	0.7
MRN22003W1	300	409.4	410.75	1.35	0.46	0.03	8.9
MRN22005	300	1381	1382	1	0.08	0.01	1.9
MRN22005	300	1382	1384	2	0.55	0.04	1.4
MRN22005	300	1384	1386	2	0.38	0.02	0.5
MRN22005	300	1386	1387	1	0.09	0.03	0.1
MRN23004	300	616	618	2	0.05	0.19	1.1
MRN23004	300	618	619	1	0.35	0.24	6.0
MRN23004	300	630	632	2	0.03	0.04	6.9
MRN23004	300	632	634	2	0.06	0.04	3.4
MRN23004	300	634	636	2	0.09	0.16	1.5
MRN23004	300	636	638	2	0.10	0.09	1.0
MRN23004	300	638	640	2	0.19	0.16	4.4
MRN23004	300	640	642	2	0.06	0.01	1.0
MRN23004	300	642	644	2	0.07	0.01	0.5
MRN23004	300	644	646	2	0.11	0.03	1.1
MRN23004	300	667	668	1	0.35	0.12	1.5

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN23004	300	668	670	2	0.05	0.09	0.2
MRN23004	300	670	672	2	0.04	0.02	0.1
MRN23004	300	672	674	2	0.13	0.08	0.7
MRN23004	300	674	676	2	0.28	0.21	1.6
MRN23004	300	676	678	2	0.39	0.32	1.4
MRN23004	300	678	680	2	0.52	0.21	1.7
MRN23004	300	680	681	1	0.04	0.01	0.1
MRN23004	300	744	745	1	0.34	0.03	5.3
MRN23004	300	752	754	2	0.12	0.01	0.7
MRN23004	300	754	756	2	0.23	0.01	1.3
MRN23004	300	756	758	2	0.44	0.01	2.4
MRN23004	300	758	760	2	0.32	0.01	1.6
MRN23004	300	760	762	2	0.48	0.01	2.0
MRN23004	300	762	764	2	0.17	0.01	1.0
MRN23004	300	764	766	2	0.16	0.01	0.9
MRN23004	300	766	768	2	0.15	0.01	1.4
MRN23004	300	768	770	2	0.11	0.01	0.7
MRN23004	300	770	772	2	0.33	0.01	1.6
MRN23004	300	772	774	2	0.24	0.01	1.7
MRN23004	300	774	776	2	0.97	0.02	5.1
MRN23004	300	776	778	2	0.20	0.01	1.8
MRN23004	300	778	780	2	0.41	0.01	3.2
MRN23004	300	780	782	2	0.55	0.04	16.0
MRN23004	300	782	784	2	0.72	0.09	15.6
MRN23004	300	784	786	2	0.16	0.03	10.4
MRN23004	300	786	787	1	0.06	0.01	18.9
MRN23004W2	300	542	543	1	0.04	0.33	3.1
MRN23004W2	300	590	592	2	0.43	0.06	2.6
MRN23004W2	300	592	594	2	0.07	0.07	0.4
MRN23004W2	300	594	596	2	0.18	0.22	1.1
MRN23004W2	300	605	606	1	0.02	0.01	0.1
MRN23004W2	300	660	662	2	0.03	0.02	3.7
MRN23004W2	300	662	664	2	0.57	0.02	3.1
MRN23004W2	300	664	666	2	0.56	0.02	2.6
MRN23004W2	300	666	668	2	0.36	0.02	1.7
MRN23004W2	300	668	670	2	0.52	0.02	2.2
MRN23004W2	300	670	672	2	0.42	0.02	1.7
MRN23004W2	300	672	674	2	0.21	0.02	2.4
MRN23006	300	151	152	1	0.07	0.08	0.7
MRN23006	300	152	154	2	0.42	0.41	4.1
MRN23006	300	154	156	2	0.03	0.07	0.6
MRN23006	300	156	158	2	0.14	0.08	0.7
MRN23006	300	158	160	2	0.51	0.14	1.9

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN23006	300	160	162	2	0.48	0.12	1.8
MRN23006	300	162	163	1	0.23	0.06	0.8
MRN23007	300	264	265	1	0.05	0.45	0.3
MRN23007	300	298	300	2	0.59	0.05	5.9
MRN23007	300	300	302	2	0.13	0.03	19.2
MRN23010	300	188	190	2	0.78	0.13	2.6
MRN23010	300	190	192	2	0.79	0.56	4.8
MRN23010	300	192	193	1	0.19	0.26	1.1
MRN23010	300	204	206	2	0.24	0.19	1.5
MRN23010	300	206	208	2	0.24	0.10	1.5
MRN23010	300	208	210.5	2.5	0.26	0.11	2.3
MRN23010	300	211.1	213	1.9	0.32	0.04	12.1
MRN23012	300	317	318	1	0.21	0.04	2.4
MRN23012	300	318	320	2	0.34	0.05	2.6
MRN23012	300	320	321	1	0.15	0.05	2.6
MRN23013	300	155	156	1	0.15	0.45	1.3
MRN23013	300	159	160	1	0.27	0.21	1.1
MRN23014A	300	155	156	1	0.00	0.01	1.0
MRN23014A	300	156	158	2	0.88	0.75	8.8
MRN23014A	300	158	160	2	0.05	0.42	8.0
MRN23014A	300	164	166	2	0.59	0.61	5.8
MRN23014A	300	166	168	2	0.34	0.21	1.8
MRN23014A	300	168	170	2	0.21	0.15	1.7
MRN23020	300	330.4	332	1.6	0.16	0.03	8.4
MRN23020	300	332	334.5	2.5	0.41	0.24	3.9
MRN23020	300	345	346	1	0.58	0.62	3.5
MRN23020	300	346	348	2	0.18	0.39	1.1
MRN23020	300	348	350	2	0.08	0.02	0.5
MRN23020	300	350	351	1	0.38	0.15	2.0
MRN23020	300	361	362	1	0.07	0.05	0.5
MRN23020	300	362	364	2	0.44	0.32	2.0
MRN23020	300	364	366	2	0.41	0.25	3.0
MRN23020	300	366	368	2	0.17	0.16	1.5
MRN23020	300	394	396	2	0.13	0.02	0.9
MRN23020	300	396	398	2	0.53	0.03	2.7
MRN23020	300	398	400	2	0.15	0.03	1.0
MRN23020	300	400	401	1	0.09	0.05	1.3
MND12	400	182	183	1	0.01	1.57	6.0
MND12	400	196	198	2	1.21	3.10	7.5
MND12	400	198	200	2	0.10	0.15	38.0
MND14	400	272	274	2	0.67	0.51	4.0
MND14	400	274	276	2	0.45	0.36	2.5
MND14	400	276	277	1	0.30	0.10	1.0

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MND14	400	279	280	1	0.41	0.04	1.0
MND14	400	281	282	1	0.26	0.04	1.0
MND14	400	282	284	2	0.52	0.12	2.0
MND14	400	284	286	2	0.60	0.06	2.0
MND14	400	286	288	2	0.63	0.08	2.5
MND14	400	288	290	2	0.85	0.16	2.5
MRN07002	400	374	376	2	0.01	0.03	2.0
MRN07002	400	376	378	2	0.01	0.03	2.0
MRN07002	400	378	380	2	1.38	0.79	17.0
MRN07002	400	380	382	2	0.66	0.69	9.0
MRN07002	400	382	384	2	0.03	0.04	6.0
MRN07002	400	384	386	2	0.03	0.03	4.0
MRN07002	400	386	388	2	0.41	1.09	3.0
MRN07002	400	388	390	2	2.16	0.78	10.0
MRN07002	400	390	392	2	1.22	0.59	6.0
MRN07002	400	392	394	2	1.82	0.45	10.0
MRN07002	400	394	396	2	1.19	1.80	6.0
MRN07002	400	396	398	2	0.13	0.07	5.0
MRN12004	400	870.9	872	1.1	2.58	5.14	13.7
MRN12004	400	872	874	2	2.29	1.53	21.1
MRN12004	400	874	876	2	2.42	1.27	17.4
MRN12004	400	876	878	2	1.98	0.66	13.0
MRN12004	400	878	880	2	3.56	2.40	9.6
MRN12004	400	880	881	1	0.05	0.00	0.3
MRN12004	400	888.6	890.6	2	0.87	0.46	3.0
MRN12004	400	898.6	900	1.4	0.53	0.24	0.5
MRN12004	400	900	902	2	0.48	0.46	0.4
MRN12004	400	902	904	2	0.88	1.00	1.0
MRN12004	400	904	906.6	2.6	0.40	0.17	0.4
MRN12004	400	910.6	912	1.4	0.23	0.16	0.5
MRN12004	400	912	914	2	0.58	0.40	1.0
MRN12004	400	914	916	2	0.81	0.56	1.2
MRN12004	400	916	918	2	0.63	0.98	0.5
MRN12004	400	918	920	2	0.35	0.30	0.6
MRN12004	400	920	921	1	0.80	1.91	1.4
MRN12004B	400	1011.8	1014	2.2	0.63	0.16	67.3
MRN12004B	400	1014	1016	2	0.60	0.11	39.9
MRN12004B	400	1016	1018	2	0.80	0.17	60.0
MRN12004B	400	1018	1020	2	0.49	0.10	25.3
MRN12004B	400	1020	1022	2	0.18	0.06	8.5
MRN12004B	400	1029	1030	1	0.45	0.05	12.4
MRN12004B	400	1030	1032	2	0.23	0.09	9.6
MRN12004B	400	1032	1034	2	0.58	0.12	38.1

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN12004B	400	1034	1036	2	0.64	0.31	28.5
MRN12004B	400	1036	1038	2	0.31	0.03	10.2
MRN12004B	400	1038	1040	2	0.17	0.01	6.1
MRN12004B	400	1040	1042	2	1.05	0.11	32.6
MRN12004B	400	1042	1044	2	1.50	0.16	33.8
MRN12004B	400	1044	1046	2	0.41	0.04	12.1
MRN12004B	400	1046	1048	2	0.24	0.03	11.9
MRN12004B	400	1048	1050	2	0.09	0.01	2.3
MRN12004B	400	1050	1052	2	0.25	0.03	8.0
MRN12004B	400	1052	1054	2	0.16	0.04	4.7
MRN12004B	400	1054	1056	2	2.14	0.80	45.5
MRN12004B	400	1056	1058	2	2.50	1.76	62.1
MRN12004B	400	1058	1060	2	2.14	1.33	66.9
MRN12004B	400	1060	1062	2	1.50	0.86	29.3
MRN12004B	400	1062	1064	2	1.14	0.25	23.8
MRN12004B	400	1064	1066	2	1.23	0.13	19.5
MRN12004B	400	1066	1068	2	1.46	0.32	23.9
MRN12004B	400	1068	1070	2	0.59	0.13	9.5
MRN12004B	400	1070	1072	2	1.47	1.67	30.1
MRN12004B	400	1072	1074	2	0.87	0.23	17.4
MRN12004B	400	1074	1076	2	0.27	0.12	9.0
MRN13001	400	861	862	1	0.40	0.16	0.6
MRN13001	400	862	864	2	0.31	0.23	3.8
MRN13001	400	864	866	2	0.51	0.94	1.5
MRN13001	400	866	868	2	1.52	1.20	2.3
MRN13001	400	868	870	2	0.44	0.30	0.7
MRN13001	400	870	872	2	4.98	2.18	7.1
MRN13001	400	872	874	2	1.54	0.25	2.6
MRN13001	400	874	876	2	0.98	1.51	1.8
MRN13001	400	876	878	2	0.48	0.52	1.5
MRN13001	400	878	880	2	0.32	0.31	0.6
MRN13001	400	880	882	2	0.60	0.25	0.9
MRN13001	400	882	884	2	0.66	0.26	0.9
MRN13001	400	884	886	2	0.59	0.35	0.9
MRN13001	400	886	888	2	0.79	0.30	1.3
MRN13001	400	888	890	2	0.83	0.51	1.0
MRN13001	400	890	892	2	0.67	0.24	0.9
MRN13001	400	892	894	2	0.36	0.29	0.4
MRN13001	400	894	896	2	0.50	0.23	0.6
MRN13001	400	896	898	2	0.68	0.33	0.8
MRN13001	400	898	900	2	0.83	0.58	1.0
MRN13001	400	900	902	2	1.27	2.15	1.5
MRN13001	400	902	904	2	1.06	0.75	1.5

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN13001	400	904	906	2	0.63	1.28	0.8
MRN13001	400	906	908	2	0.20	0.12	0.2
MRN13001	400	908	910	2	0.22	0.24	0.6
MRN13001	400	910	912	2	0.07	0.04	0.2
MRN13001	400	912	914	2	0.67	0.32	0.8
MRN13001	400	914	916	2	2.71	0.92	3.2
MRN13001	400	916	918	2	1.15	0.85	1.5
MRN13001	400	918	920	2	2.68	1.38	2.9
MRN13001	400	920	922	2	2.19	3.01	2.9
MRN13001	400	922	924	2	0.47	0.63	0.5
MRN13001	400	924	926	2	0.45	0.64	0.4
MRN13001	400	926	928	2	0.91	0.63	0.9
MRN13001	400	928	930	2	0.49	0.16	0.6
MRN13001	400	930	932	2	0.57	0.08	0.4
MRN13001	400	932	934	2	0.45	0.10	0.3
MRN13001	400	934	936	2	0.82	0.18	0.6
MRN13001	400	936	938	2	0.76	0.31	0.5
MRN13001	400	938	940	2	0.32	0.10	0.3
MRN13001	400	940	942	2	0.12	0.02	0.1
MRN13001	400	954	956	2	0.05	0.04	0.1
MRN13001	400	956	958	2	0.92	0.44	7.6
MRN13001	400	958	960	2	1.53	0.80	10.5
MRN13001	400	960	962	2	0.17	0.04	0.5
MRN13001	400	962	964	2	0.50	0.28	1.5
MRN13001	400	964	966	2	0.13	0.03	0.4
MRN13001	400	966	968	2	0.84	0.89	31.7
MRN14004W1	400	1073	1074	1	0.41	0.06	47.0
MRN14004W1	400	1074	1076	2	0.81	0.07	48.4
MRN14004W1	400	1076	1078	2	0.72	0.08	56.0
MRN14004W1	400	1078	1080	2	1.07	0.35	62.4
MRN14004W1	400	1080	1082	2	0.71	0.09	36.0
MRN14004W1	400	1082	1084	2	0.26	0.06	17.9
MRN14004W1	400	1197	1198	1	0.12	0.04	0.2
MRN14004W1	400	1198	1200	2	0.60	0.68	0.9
MRN14004W1	400	1200	1202	2	1.13	0.37	2.0
MRN14004W1	400	1202	1204	2	1.48	1.46	1.9
MRN14004W1	400	1204	1206	2	1.83	10.83	4.7
MRN14004W1	400	1206	1208	2	1.29	1.23	1.9
MRN14004W1	400	1208	1210	2	1.30	4.11	2.9
MRN14004W1	400	1210	1212	2	0.29	0.12	0.5
MRN14004W1	400	1212	1213	1	0.24	0.07	1.2
MRN22001	400	798	800	2	0.26	0.16	0.4
MRN22001	400	800	802	2	0.75	0.36	1.2

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN22001	400	802	804	2	1.04	0.97	1.8
MRN22001	400	804	806	2	0.69	0.26	0.8
MRN22001	400	806	808	2	1.02	0.58	1.2
MRN22001	400	808	810	2	0.88	0.63	1.1
MRN22001	400	810	812	2	1.07	0.87	1.6
MRN22001	400	812	814	2	0.29	0.11	0.4
MRN22001	400	828	830	2	0.33	0.14	0.3
MRN22001	400	830	832	2	0.95	2.14	2.0
MRN22001	400	832	833	1	0.17	0.05	0.3
MRN22001A	400	738	740	2	0.42	0.36	0.6
MRN22001A	400	740	742	2	0.94	0.80	1.4
MRN22001A	400	742	744	2	1.68	1.38	2.2
MRN22001A	400	744	746	2	0.17	0.13	0.7
MRN22001A	400	746	747	1	0.49	0.29	0.7
MRN22003	400	426	428	2	0.09	0.01	0.6
MRN22003	400	428	430	2	1.62	0.20	8.3
MRN22003	400	430	431	1	0.44	0.01	5.2
MRN23004	400	619	620	1	0.17	0.12	2.0
MRN23004	400	620	622	2	0.54	0.35	10.4
MRN23004	400	622	624	2	0.56	0.36	7.2
MRN23004	400	624	626	2	3.62	1.34	23.6
MRN23004	400	626	628	2	2.06	0.66	12.2
MRN23004	400	628	630	2	0.04	0.03	5.6
MRN23004	400	646	648	2	0.09	0.03	0.8
MRN23004	400	648	650	2	1.42	0.12	3.8
MRN23004	400	650	652	2	1.08	0.24	3.0
MRN23004	400	652	654	2	0.33	0.37	1.4
MRN23004	400	654	656	2	0.41	0.24	1.7
MRN23004	400	656	658	2	1.47	0.66	3.6
MRN23004	400	658	660	2	1.18	4.10	3.7
MRN23004	400	660	662	2	0.56	0.33	1.1
MRN23004	400	662	664	2	0.52	0.21	1.9
MRN23004	400	664	666	2	0.77	0.51	5.1
MRN23004	400	666	667	1	0.30	0.09	0.7
MRN23004W2	400	543	544	1	0.15	0.49	8.8
MRN23004W2	400	544	546	2	0.05	0.15	3.3
MRN23004W2	400	546	548	2	3.19	4.28	12.8
MRN23004W2	400	548	550	2	0.39	0.22	7.0
MRN23004W2	400	550	552	2	0.99	0.66	14.4
MRN23004W2	400	552	554	2	0.80	0.82	4.6
MRN23004W2	400	554	556	2	0.84	0.94	4.8
MRN23004W2	400	556	558	2	0.73	0.88	5.8
MRN23004W2	400	558	560	2	0.43	0.32	9.3

Hole ID	Domain	Interval(m)	From (m)	To (m)	Copper %	Gold g/t	Silver g/t
MRN23004W2	400	560	562	2	1.07	0.71	6.5
MRN23004W2	400	562	564	2	0.47	0.25	2.8
MRN23004W2	400	564	566	2	0.25	0.08	5.7
MRN23004W2	400	566	568	2	0.35	0.48	16.6
MRN23004W2	400	568	570	2	0.69	0.56	6.3
MRN23004W2	400	570	572	2	0.50	0.57	6.4
MRN23004W2	400	572	574	2	0.98	0.77	8.3
MRN23004W2	400	574	576	2	0.56	0.26	14.4
MRN23004W2	400	576	578	2	0.40	0.18	2.0
MRN23004W2	400	578	580	2	0.69	0.20	2.7
MRN23004W2	400	580	582	2	1.63	2.75	17.8
MRN23004W2	400	582	584	2	0.75	0.64	2.6
MRN23004W2	400	584	586	2	0.48	1.01	2.1
MRN23004W2	400	586	588	2	0.86	0.45	2.7
MRN23004W2	400	588	590	2	0.28	0.10	1.3
MRN23004W2	400	596	598	2	0.56	0.76	3.6
MRN23004W2	400	598	600	2	0.33	0.38	1.6
MRN23004W2	400	600	602	2	0.67	0.13	1.9
MRN23004W2	400	602	604	2	1.49	0.60	4.2
MRN23004W2	400	604	605	1	0.01	0.01	0.1
MRN23007	400	265	266	1	0.01	0.01	0.1
MRN23007	400	266	267	1	1.36	1.65	5.3
MRN23020	400	334.5	336	1.5	0.11	0.01	0.8
MRN23020	400	336	338	2	0.67	0.47	6.5
MRN23020	400	338	340	2	1.08	0.93	6.8
MRN23020	400	340	342	2	0.57	0.60	2.3
MRN23020	400	342	344	2	0.31	0.16	2.7
MRN23020	400	344	345	1	0.20	0.22	1.5

APPENDIX 6 – GOLD ONLY COMPOSITES

Hole ID	Domain	Interval(m)	From (m)	To (m)	Gold g/t
MND18	500	2	234	236	0.31
MND18	500	2	236	238	0.33
MND18	500	2	238	240	3.45
MND18	500	2	240	242	0.60
MND18	500	2	242	244	2.00
MND18	500	2	244	246	0.34
MND18	500	2	246	248	0.10
MND18	500	2	248	250	0.18
MND18	500	2	250	252	0.10
MND18	500	2	252	254	0.38
MND18	500	2	254	256	0.30
MND18	500	2	256	258	0.30
MND18	500	2	258	260	0.05
MND18	500	2	260	262	0.06
MND18	500	2	262	264	1.58
MND18	500	2	264	266	0.57
MND18	500	2	266	268	3.21
MND18	500	2	268	270	0.70
MND18	500	2	270	272	0.95
MND18	500	2	272	274	1.00
MND18	500	2	274	276	0.55
MND18	500	2	276	278	1.24
MND18	500	2	278	280	2.72
MND20	500	2	157	159	1.12
MND20	500	2	159	161	0.82
MND20	500	2	161	163	0.67
MND20	500	2	264	266	0.30
MND20	500	2	266	268	0.45
MND20	500	2	268	270	1.71
MND20	500	2	270	272	0.20
MND20	500	2	272	274	0.25
MND20	500	2	274	276	0.05
MND20	500	2	276	278	0.45
MND20	500	2	278	280	0.71
MND20	500	2	280	282	0.59
MND20	500	2	282	284	1.43
MND20	500	2	284	286	4.83
MND20	500	2	286	288	1.86
MND20	500	2	288	290	1.28
MND20	500	2	290	292	0.40
MND4	500	1	185	186	0.64
MND4	500	1	186	187	2.10
MND4	500	1	187	188	3.11
MND5	500	1	74	75	0.56

Hole ID	Domain	Interval(m)	From (m)	To (m)	Gold g/t
MND5	500	1	75	76	0.66
MND5	500	1	76	77	1.50
MND5	500	1	77	78	0.04
MND5	500	1	78	79	0.10
MND5	500	1	79	80	1.36
MND5	500	1	80	81	2.66
MND5	500	1	81	82	0.56
MND5	500	1	82	83	0.34
MND6	500	1	173	174	0.68
MND6	500	1	174	175	1.36
MND6	500	1	175	176	0.44
MND6	500	1	176	177	0.48
MND6	500	1	177	178	1.58
MND6	500	1	178	179	6.85
MND6	500	1.2	179	180.2	1.12
MNR4	500	2	96	98	1.05
MNR4	500	2	98	100	0.30
MNR4	500	2	100	102	0.02
MNR5	500	2	56	58	0.55
MNR5	500	2	58	60	1.20
MNR5	500	2	60	62	1.06
MNR5	500	2	62	64	0.06
MNR5	500	2	64	66	0.03
MNR5	500	2	66	68	0.40
MNR5	500	2	68	70	1.05
MNR5	500	2	70	72	0.28
MRN13002	500	1.1	461.9	463	0.64
MRN14003	500	0.7	395.3	396	0.63
MRN14003	500	1	396	397	0.77
MRN14003	500	1	397	398	2.72
MRN14003	500	1	398	399	0.82
MRN14003	500	1	399	400	1.89
MRN14003	500	1	400	401	0.58
MRN14003	500	1	401	402	1.48
MRN14003	500	1	402	403	1.50
MRN14003	500	0.7	403	403.7	2.90
MRN14003	500	1.5	403.7	405.2	0.17
MRN14003	500	0.8	405.2	406	0.52
MRN14003	500	1	406	407	1.86
MRN14003	500	1	407	408	2.36
MRN14003	500	1	408	409	2.49
MRN14003	500	1	409	410	2.06
MRN14003	500	1	410	411	0.90
MRN14003	500	1	411	412	2.26
MRN14003	500	1	412	413	1.37

Hole ID	Domain	Interval(m)	From (m)	To (m)	Gold g/t
MRN14003	500	1	413	414	1.49
MRN14003	500	1	414	415	1.55
MRN14003	500	1	415	416	0.93
MRN14003	500	1	416	417	1.81
MRN14003	500	1	417	418	0.60
MRN14003	500	1	418	419	0.55
MRN14003	500	1	419	420	0.28
MRN14003	500	1	420	421	0.57
MRN14003	500	1	421	422	0.71
MRN14003	500	1	422	423	0.18
MRN14003	500	1	423	424	0.59
MRN14003	500	1	424	425	0.45
MRN14003	500	1	425	426	0.30
MRN14003	500	1	426	427	0.13
MRN14003	500	1	427	428	0.64
MRN14003	500	1	428	429	1.36
MRN14003	500	1	429	430	0.78
MRN14003	500	1	430	431	0.57
MRN14003	500	1	431	432	0.86
MRN14003	500	1	432	433	0.36
MRN14003	500	1	433	434	0.16
MRN14003	500	1	434	435	1.10
MRN14003	500	1	435	436	0.18
MRN14003	500	0.7	436	436.7	0.86
MRN14003	500	1.3	436.7	438	2.69
MRN14003	500	1	438	439	0.28
MRN14003	500	1	439	440	1.53
MRN14003	500	1	440	441	0.60
MRN14003	500	1	441	442	0.61
MRN14003	500	1	442	443	0.49
MRN14003	500	1	443	444	0.73
MRN14003	500	1	444	445	0.93
MRN14003	500	I	445	446	1.11
MRN14003	500	1	446	447	1.06
MRN14003	500	l	447	448	1.91
MRN14003	500	1	448	449	1.78
MRN14003	500	1	449	450	1.22
MRN14003	500	0.5	450	450.5	0.72
MRN14003	500	0.5	450.5	451	3.33
MRN14003	500	1	451	452	0.54
MRN14003	500	1	452	453	0.29
MRN14003	500	0.9	453	453.9	0.21
MRN14003	500	1.1	453.9	455	0.41
MRN14003	500	1	455	456	0.51
MRN14003	500	1	456	457	0.94

Hole ID	Domain	Interval(m)	From (m)	To (m)	Gold g/t
MRN14003	500	1	457	458	0.77
MRN14003	500	1	458	459	1.05
MRN14003	500	1	459	460	1.23
MRN14003	500	0.85	460	460.85	1.19
MRN14003	500	1.2	477	478.2	0.02
MRN14003	500	0.8	478.2	479	0.18
MRN14003	500	1	479	480	0.45
MRN14003	500	1	480	481	1.22
MRN14003	500	1	481	482	0.89
MRN14003	500	1.3	482	483.3	0.79
MRN14003	500	0.7	483.3	484	0.11
MRN14003	500	1	484	485	0.08
MRN14003	500	1	485	486	0.04
MRN14003	500	1	486	487	0.16
MRN14003	500	1	487	488	0.04
MRN14003	500	0.8	488	488.8	0.05
MRN14007	500	1	511.9	512.9	1.37
MRN14007	500	1.1	512.9	514	0.60
MRN23002	500	1	284	285	0.25
MRN23002	500	1	285	286	1.80
MRN23002	500	1	286	287	1.48
MRN23002	500	1	287	288	1.08
MRN23002	500	1	288	289	1.97
MRN23002	500	1	289	290	1.98
MRN23002	500	1	290	291	0.65
MRN23002	500	1	291	292	0.53
MRN23002	500	1	292	293	0.37
MRN23002	500	1	293	294	1.13
MRN23002	500	1	294	295	0.49
MRN23002	500	1	295	296	1.13
MRN23002	500	1	296	297	0.07
MRN23002	500	1	297	298	0.01
MRN23002	500	1	298	299	0.05
MRN23002	500	1	299	300	0.07
MRN23002	500	1	300	301	0.66
MRN23002	500	'	301	302	1.42
MRN23002	500]	302	303	2.56
MRN23003	500	1	407	408	0.01
MRN23003	500	1	408	409	0.01
MRN6001	500	4	252	256	0.79
MRN6001	500	4	256	260	0.43
MRN6001	500	4	260	264	0.20
MRN6001 MRN6001	500	4	264	268 272	0.02
	500	4	268		
MRN6001	500	4	272	276	0.70

Hole ID	Domain	Interval(m)	From (m)	To (m)	Gold g/t
MRN6001	500	4	276	280	0.25
MRN6001	500	4	280	284	0.04
MRN6001	500	4	284	288	0.03
MRN6001	500	4	288	292	0.04
MRN6001	500	4	292	296	0.56
MRN6001	500	4	296	300	1.12
MRN6001	500	1	300	301	1.72
MRN6001	500	1	301	302	1.18