

ASX:RDM

New Sybella REO Discovery Mount Isa Region

Breakthrough Metallurgical Results Favours Low-CAPEX, Low-COST Heap Leach Processing

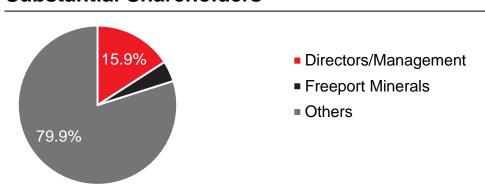
February 2024

Sybella Discovery Corporate Snapshot

ASX Code	
RDM	

Shares on Issue 298,353,338

Share Price (Date)
18


Cash (at 31 Dec 2023)

\$54M \$3.4M

Board Of Directors & Senior Management

Rob Rutherford	Managing Director
Russell Barwick	Chairman (non exec)
Joshua Pitt	Director (non exec)
Patrick Flint	Company Secretary

Substantial Shareholders

Share Price & Trade Volume: 01/06/2022 - 09/02/2024

Sybella Discovery Project Comparison

Two General REO Project Types Emerging

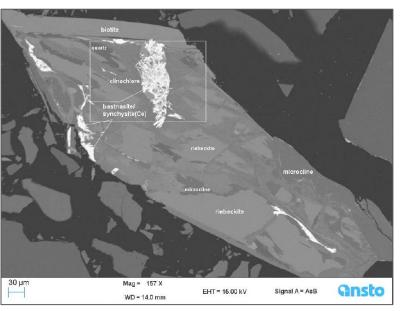
Complex High Temperature	Simple Low Temperature Leachable
 Monazite/Apatite Carbonatites Monazite Heavy Mineral Sands 	 Clay-Hosted Ionic Clay-Hosted Non-Ionic Granite-Hosted "Sybella Discovery"
High Capex	Potential Low Capex Potential Low Opex

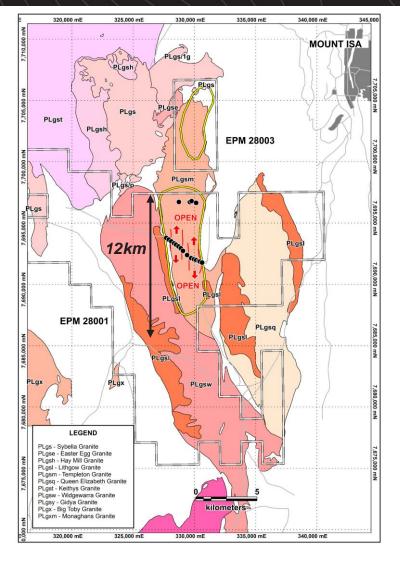
Sybella Discovery A 'World First' in Northwest Queensland

New REO deposit style

 Just 20 kilometres southwest of Mount Isa with excellent infrastructure options

Sybella Discovery


A 'World First' in Northwest Queensland



New REO deposit style

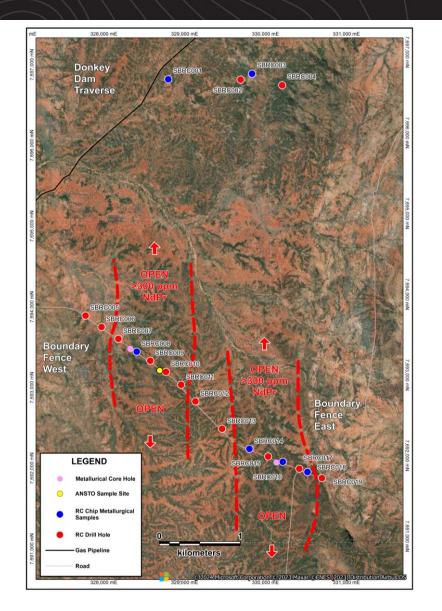
- Hosted in REOenriched granite (a lowacid consuming rock)
- 12km long x 3km wide
- Bulk of REE's in soluble fluoro-carbonate minerals

Sybella Discovery

A 'World First' in Northwest Queensland

New REO deposit style

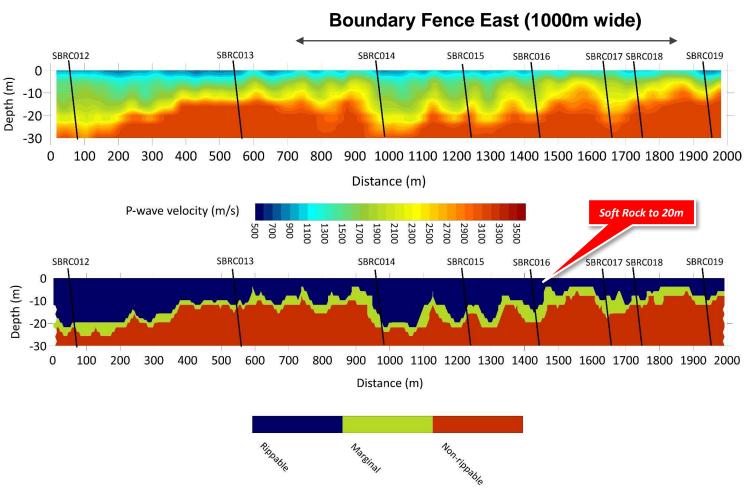
 Proof-of-concept RC drilling reveals two higher grade REO zones, each about 1km wide


Sybella Discovery

A 'World First' in Northwest Queensland

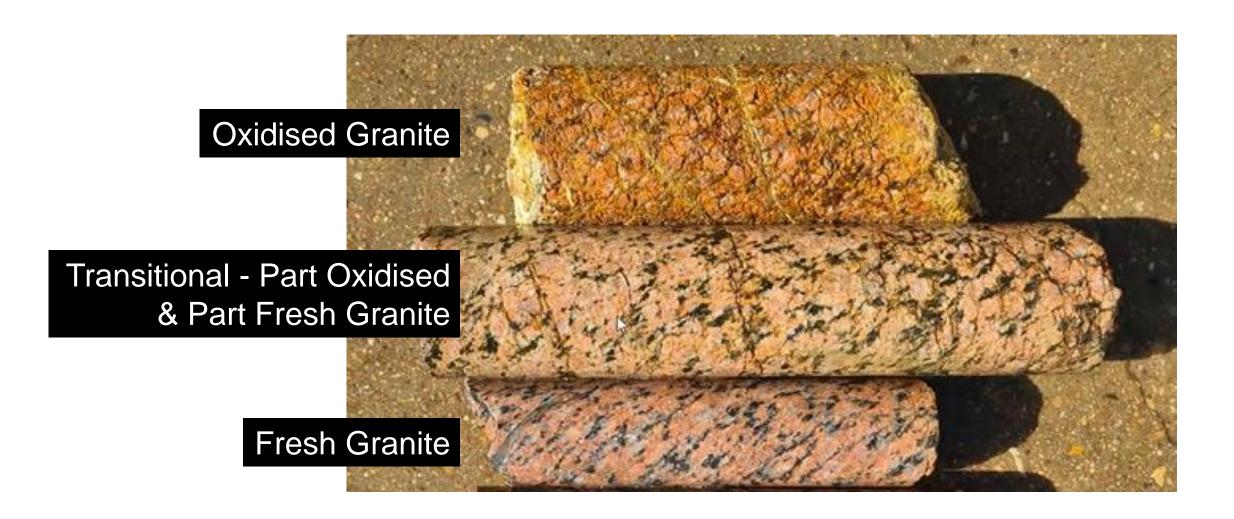
New REO deposit style

 Zones open north and south and at depth offering vast tonnage potential



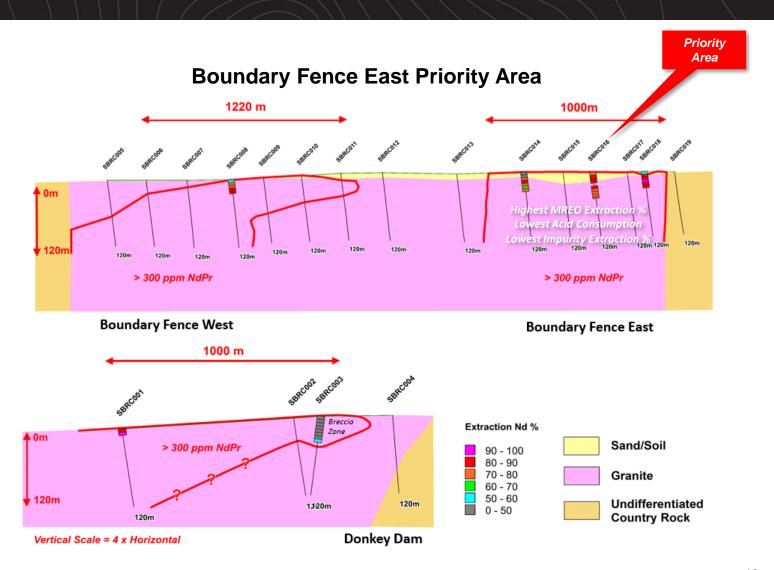
Sybella Discovery A 'World First' in Northwest Queensland

New REO deposit style


 Softer weathered granite in top 20m adds mining and comminution advantages

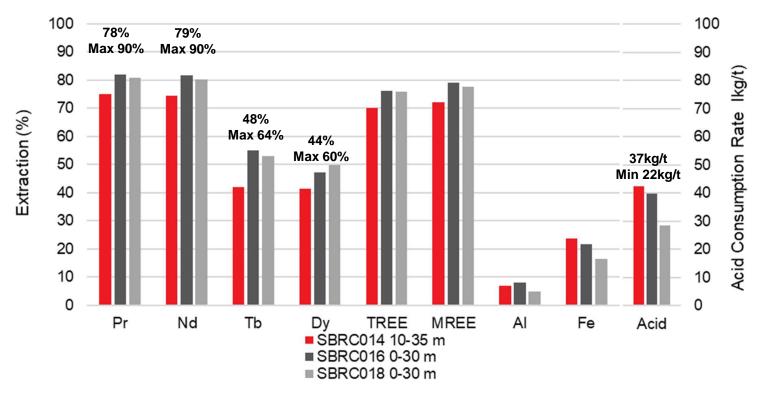
Seismic Refraction Profiles showing interpreted P-wave velocity profile for rock rippability

Sybella Discovery A 'World First' in Northwest Queensland



Successful proof-of-concept test work

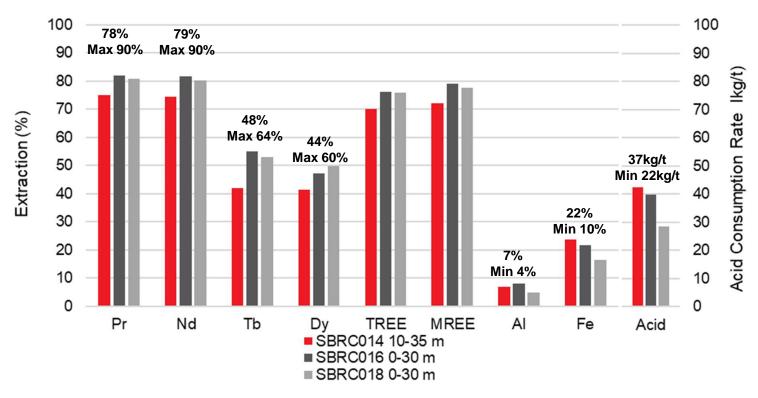
- 36 intermittent bottle roll leach tests (IBRT) on coarse RC-chip samples
- Strong REO extraction with low levels of impurities
- Using low levels of sulphuric acid at ambient (air) temperature



Successful proof-ofconcept test work

- Strong REO extraction with low levels of impurities
- Using low levels of sulphuric acid at ambient (air) temperature

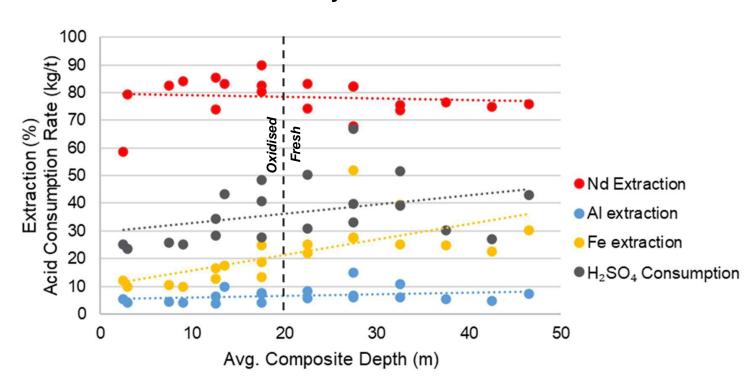
Boundary Fence East


IBRT, RC chip, pH 1, 96-hour residence time, ambient temperature, 33% w/w solids

Successful proof-ofconcept test work

- Low average impurity extractions of aluminium and iron
- Low average deleterious element extractions of 20 g/t thorium and 1 g/t uranium

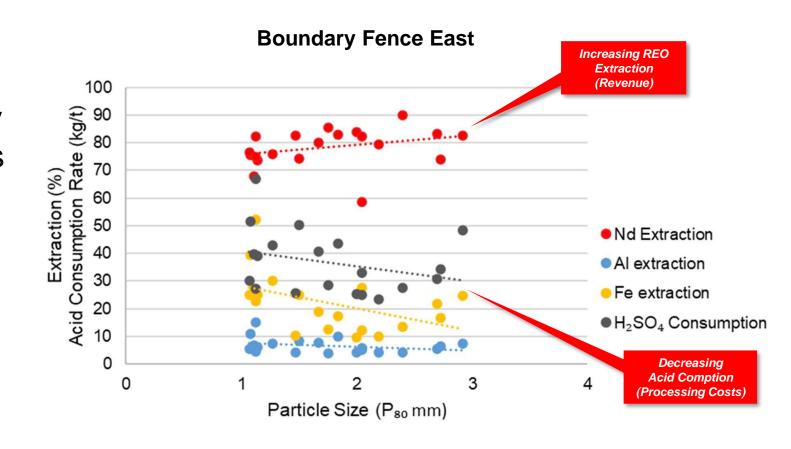
Boundary Fence East


IBRT, RC chip, pH 1, 96-hour residence time, ambient temperature, 33% w/w solids

Successful proof-ofconcept test work

 Broadly similar REO and impurity extractions and acid consumption results for both the oxidised and fresh granite samples

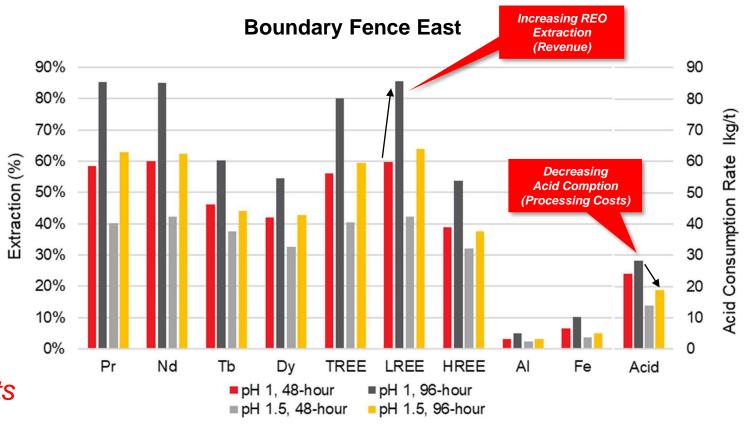
Boundary Fence East



IBRT, RC chip, pH 1, 96-hour residence time, ambient temperature, 33% w/w solids

Importantly!

- Results point to simple processing options potentially involving heap leach methods
- Data show significant opportunities to increase revenue and reduce processing costs by:
 - Increasing the particle (crush) size


IBRT, RC chip, pH 1, 96-hour residence time, ambient temperature, 33% w/w solids

Importantly!

- II. Increasing leach residence time
- III. Optimising the leach pH

"Sybella showing the processing benefits of Clay-Hosted Ionic deposits without the potential filtration and handling difficulties of clay ore"

IBRT, RC chip, pH 1, 96-hour residence time, ambient temperature, 33% w/w solids

Sybella Discovery Deposit Comparison

Simple Low Temperature Leachable

Complex High Temperature

	Sybella Granite-Hosted	Clay-Hosted Ionic	Hard Rock Carbonatites				
Main REE Minerals	Fluoro-carbonates	lonic adsorption on regolith clays	Monazite / apatite / fluoro-carbonates				
Host Rock	Weak weathered & fresh REO enriched granite	Strong weathered clays above REO enriched intrusion/volcanic rocks	Carbonatite				
Host Rock Reaction	Low acid consuming granite	Variable reagent consumption by clays	Acid consuming carbonatite				
Ore Geometry	Evenly dispersed disseminations & micro-fractures	Discrete layer or secondary enrichment blanket	Veins or Pipes				
Tonnage Potential	Vast	Large	Veins low, pipes large				
Mine Grades	Low	Low	Higher				
Proposed Mining	Bulk tonnage open pit Rip plus drill and blast	Selective open pit No drill and blast	Selective open pit Drill and blast				
Expected Strip	Zero-low	Low-moderate	Veins high, pipes lower				
Expected Comminution	Soft weathered Moderate fresh	None Very soft	Soft weathered Moderate fresh				
Mineral Concentration	None required	None required	Complex gravity, possible flotation (30-40% payable as monazite concentrate)				
Expected Processing to Solubilise REO Minerals	Simple Low (ambient air) temperature Sulphuric acid leach pH1-2 Heap leach potential	Simple Low (ambient air) temperature Ammonia Sulphate wash at pH4 Tank leach or heap leach Clay filtration required for tank leach	Complex High temperature Acid "cracking" of mineral concentrate. Potential for radionuclide issues				
Expected Processing Costs	Lower	Moderate	Higher				
Product	MREO (70-80% payable)	MREO (70-80% payable)	MREO (70-80% payable)				
Refining or REO Separation	Optional	Optional	Essential (adds to capex)				
Possible Capex and Scale	Low Capex Scalable	Moderate Capex Scalable	High Capex Needs to be large scale from start				
Locations	Australia - Sybella	China/Myanmar - Guangdong Brazil - Caldiera Uganda - Makuutu	China - Bayn Obo Australia - Mount Weld, Yangibana				

Sybella Discovery Low Temperature Leachable Projects

Location	ASX Code	Project	L	_each	Average Grade (g/t)				Extraction (%)				Extracted RE (g/t ore)				Extracted Nd ₂ O ₃ Equivalent		
			рН	Proposed Process ²	TREO	Pr ₆ O ₁₁	Nd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	TREO	Pr	Nd	Tb	Dy	Pr ₆ O ₁₁	Nd ₂ O ₃	Tb₄O ₇	Dy ₂ O ₃	g/t¹
	RDM	Sybella	1	Heap	1,701	75	261	4.8	28	73	79	78	48	44	59	205	2.3	13	354
Australia	AR3	Koppamurra	1	Tank	712	32	121	3.2	18	-	67	67	53	53	21	81	1.7	10	171
	OD6	Splinter Rock	0	Tank	1,308	63	220	2.6	15	-	60	62	58	53	37	136	1.5	8	230
Brazil	MEI	Caldeira	4	Tank	2,626	154	447	5	25	43	57	59	42	38	88	264	2.1	9	425
Diazii	TSX:ARA	Carina	4	Tank	1,510	66	231	6.9	42	-	45	46	53	49	29	106	3.6	21	283
Uganda	IXR	Makuutu	1	Heap	848	42	150	3	18	-	49	52	80	80	21	78	2.4	14	199

<u>Notes</u>

- 1 The Nd₂O₃ equivalent calculation assumes the following REO prices: Nd₂O₃ US\$57/kg, Pr₆O₁₁ US\$57/kg, Tb₄O₇ US\$784/kg, Dy₂O₃ US\$267/kg
- $Nd_2O_3 \ Equivalent = ((Extracted \ Pr_6O_{11} \ x \ Pr_6O_{11} Price) + (Extracted \ Nd_2O_3 \ x \ Nd_2O_3 \ Price) + (Extracted \ Tb_4O_7 \ x \ Tb_4O_7) + (Extracted \ Dy_2O_3 \ x \ Dy_2O_3)) / Nd_2O_3 \ Price) + (Extracted \ Dy_2O_3 \ x \ Dy_$
- Nd₂O₃ Equivalent value take into account the average IBRT Extraction % from SBRC014 10-35m, SBRC016 0-48m, SBRC018 0-30m for Sybella and Extraction % published by other listed companies
- Nd₂O₃ Equivalent does not take into account any REO lose during impurity removal or clay filtration, or assumption about treatment costs.
- 2 Proposed process has been assumed to be tank leaching unless suggested otherwise.

References

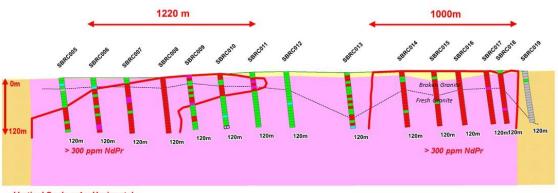
- RDM Head Grade: average Boundary Fence East SBRC014-018 0-120 m drill data, Extraction from unoptimised Phase 1 bottle rolls on RC chip, average Boundary Fence East
- AR3 Mineral Resource: ASX Release 19/09/23, Extraction: ASX Release 19/09/22 average of extractions in Figure 2
- OD6 Mineral Resource: ASX Release 18/07/23, Extraction: ASX Release 07/11/23, average 20 g/L HCl, 24-hour, Table 1
- MEI ASX Release 07/12/23, Extraction: average all clay and transition, Table 10
- IXR Mineral Resource: Makuutuu DFS 20/03/23 Ore Reserve, Extraction: Makuutuu Scoping Study 29/04/21, Figure 18
- TSX:ARA TSX Release 12/12/23, Extraction: total recovery corrected for 94% plant efficiency assumption

"Sybella showing the processing benefits of Clay-Hosted Ionic deposits without the potential filtration and handling difficulties of clay ore"

Sybella Discovery Accelerated Exploration Programs

Metallurgical Test Work on Drill Core Underway

- Comminution tests
- Intermittent bottle-roll leach tests
 - Size fraction leach tests
 - Optimisation work
- Impurity removal trials
- Mineralogical work


Step-out drilling

- Scope out 12km x 3km granite
- 800m x 400m centres, 108 holes for 6480m
- Followed by localised resource definition drilling

Assessing alternative funding options

- Critical metals grants QLD or Federal governments
- R&D

Vertical Scale = 4 x Horizontal

Disclaimer (1/2)

This Presentation was Authorised by the Board of Red Metal.

Caution Regarding Forward-Looking Statements.

This Presentation contains forward-looking statements which are identified by words such as 'may', 'could', 'potential for', 'scope for', 'opportunity for', 'believes', 'expects', or 'intends' and other similar words that involve risks and uncertainties.

These statements are expressed in good faith and believed to have a reasonable basis, and are based on a number of assumptions regarding future events and actions that, as at the date of this Presentation, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and the Company's management.

The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this Presentation will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Disclaimer (2/2)

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this Presentation, except where required by law.

These forward-looking statements are subject to various risk factors that could cause the Company's actual results to differ materially from the results expressed or anticipated in these statements.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Robert Rutherford, who is a member of the Australian Institute of Geoscientists (AIG). Mr Rutherford is the Managing Director of the Company. Mr Rutherford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Rutherford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Red Metal Limited

Rob Rutherford – Managing Director

Level 15, 323 Castlereagh Street Sydney 2000

Ph: +61 (0)2 9281 1805 | Mobile: +61 (0) 429 651 126

admin@redmetal.com.au www.redmetal.com.au

REO Supply vs Demand

Mine Supply

- China dominates
- Red flags

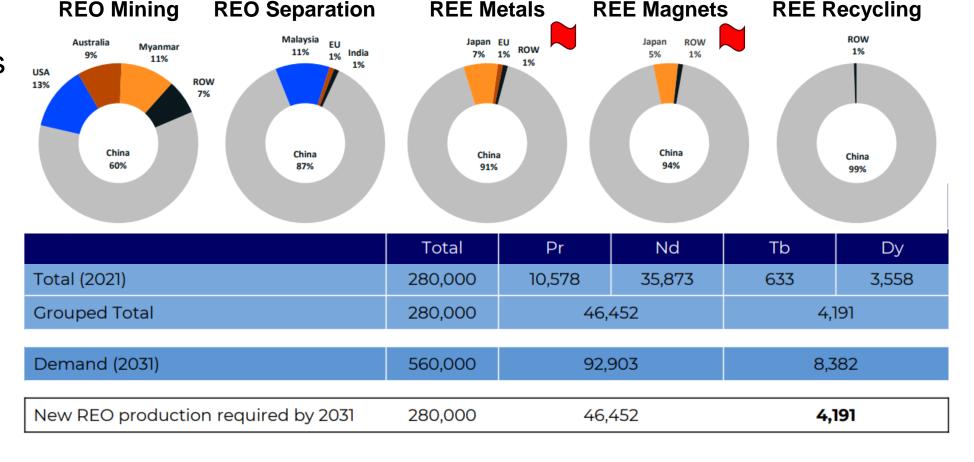
Demand

 Forecast to double by 2031

Origin	Annual REO (tonnes)								
ong	Total	Pr	Nd	Tb	Dy				
China – hard rock (2021)*	135,000	4,878	17,110	67	159				
China – Ionic Clays (2021)*	19,150	880	3,264	159	962				
Myanmar – Ionic Clays (2021)**	42,850	833	2,825	345	2,315				
USA – Mountain Pass (2021)	43,000	1,849	1,849 5,160		22				
Australia/Malaysia – Mt. Weld (2021)***	22,000	1,210	4,251	20	55				
Others (2021)	18,000	929	3,263	16	45				
Total (2021)	280,000	10,578	35,873	633	3,558				
Grouped Total	280,000	46,	452	4,191					
Demand (2031)	560,000	92,	903	8,382					
New REO production required by 2031	280,000	46,	452	4,191					

https://assets-global.website-files.com/6267a587be31507747a1c8b6/63da79c8238104bb115c0597_OEMs%20presentation_vf.pdf

REO Supply vs Demand



Downstream

- China dominates
- Red flags

Demand

 Forecast to double by 2031

https://assets-global.website-files.com/6267a587be31507747a1c8b6/63da79c8238104bb115c0597_OEMs%20presentation_vf.pdf