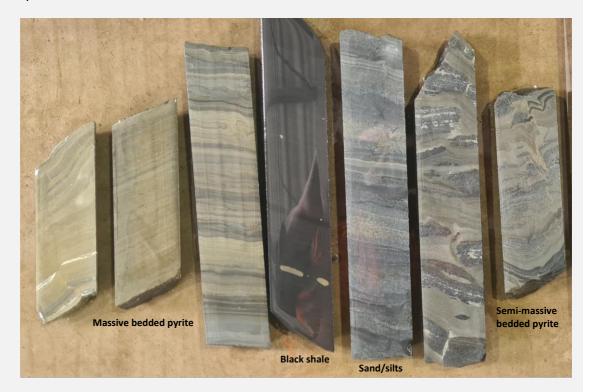


ANNOUNCEMENT


17 MARCH 2025

DRILLING UPDATE LAWN HILL

Assay results from diamond core hole BBDD24001A on the Lawn Hill Silver-Lead-Zinc project in Northwest Queensland support our proof-of-concept and point to new target opportunities.

HIGHLIGHTS

- The 119 metre true width intercept of strong pyrite-rich stratigraphy intersected in **BBDD24001A** is typical of the prospective, heavily pyritic, Barney Creek Formation and Urquhart Shale sequences that hosts the giant McArthur River and Mount Isa silver-lead-zinc mines.
- Highly anomalous thallium levels and a high silver to lead ratio in BBDD24001A are interpreted as a potential near-miss setting.
- Future exploration on the Bluebush prospect will prioritise gravity targets closer to interpreted growth faults where potential for higher-grade mineralisation is speculated.

[Figure 1] Lawn Hill Bluebush Prospect: Drill core from BBDD24001A highlighting the massive and semi-massive bedded pyritic sedimentary sequences interpreted as Riversleigh Siltstone.

ASX Code: RDM Issued Capital: 359,658,006 Ordinary shares 64,117,695 Unlisted options Red Metal Limited ACN 103 367 684 | Rob Rutherford Managing Director Level 15, 323 Castlereagh Street Sydney NSW 2000 | Ph: +61 2 9281 1805 info@redmetal.com.au www.redmetal.com.au

Bluebush Drilling

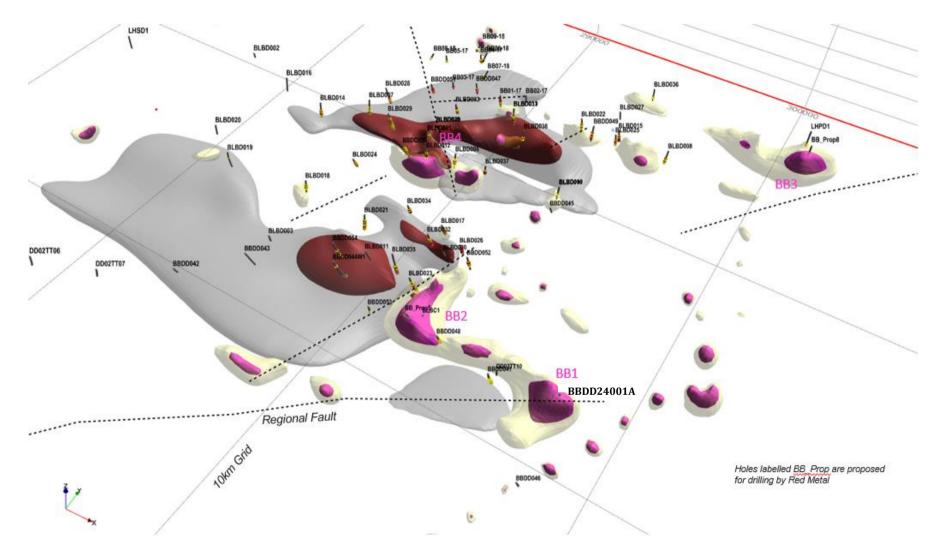
Hole BBDD24001A, our first drill test on the exciting Bluebush silver-lead-zinc prospect in Northwest Queensland (Figure 5), targeted a stand out stratigraphic gravity target BB01 (Figure 2) and intersected a dense, heavily pyritic, dolomitic and carbonaceous siltstone over a significant down-hole intercept width of 119 metres (Figures 3 and 4).

The strong iron pyrite-rich sedimentary sequence in BBDD24001A (Figures 1, 3 and 4) is interpreted as the Riversleigh Siltstone and is typical of the prospective, heavily pyritic, Barney Creek Formation and Urquhart Shale stratigraphy that hosts the giant McArthur River and Mount Isa silver-lead-zinc mines.

Assays on the pyritic sequences in BBDD24001A highlight wide intercepts of low-grade silver-lead mineralisation and a separate interval of zinc-only mineralisation (Figure 3 and Table 4) including:

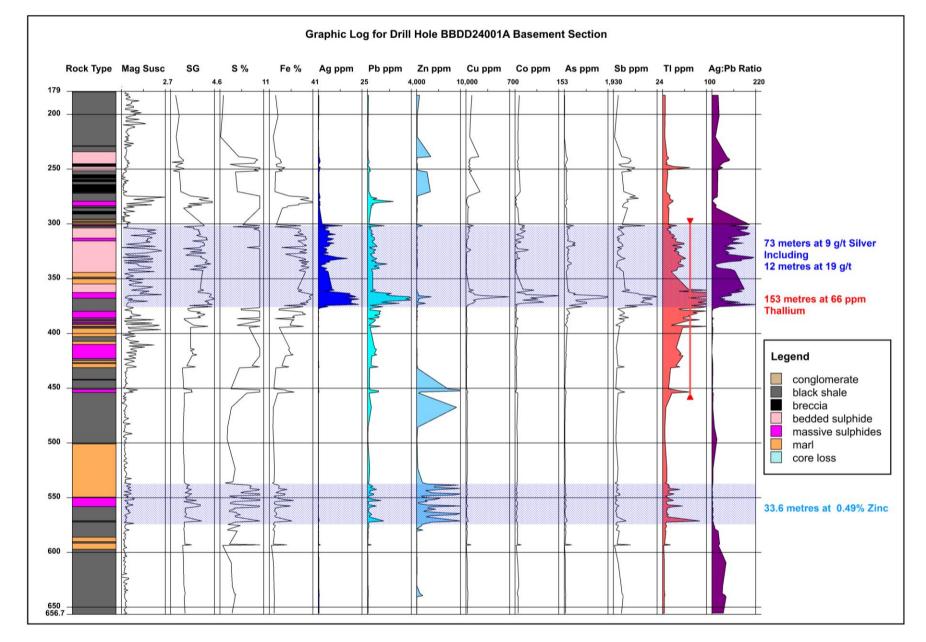
- 73 metres at 9 g/t silver, 990 ppm lead and 256 ppm zinc from 301 metres including
 12 metres at 19 g/t silver, 2446 ppm lead and 780 ppm zinc from 362 metres and,
- **33.6 metres at 4916 ppm zinc**, 304 ppm lead from 538 metres.

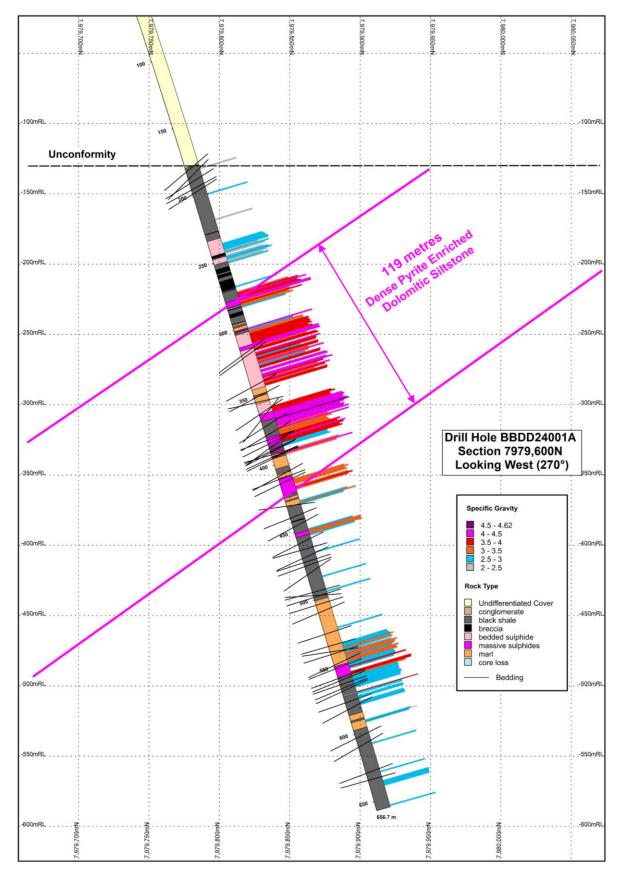
Anomalous trace elements associated with the lead and zinc mineralisation include silver, thallium, antimony, arsenic, copper and cobalt. The wide zone of low-grade silver mineralisation in BBDD24001A contains highly anomalous thallium levels ranging from 60-460 ppm with a high silver to lead ratio (Figure 3, Table 4).


Specific gravity measurements on the dense pyritic sequences are very high and range from greater than 3 to 4.62 which clearly explains the source to the gravity anomaly (Figure 4).

Heavily pyritic sequences where proximal to other large stratabound silver-lead-zinc deposits show highly anomalous thallium values with a high silver to lead ratio similar to that measured in the Bluebush hole BBDD24001A.

Red Metal's Bluebush prospect occurs within key McArthur River equivalent stratigraphy and contains more than eighty eight historic drill holes, within a 15 by 13 kilometre area. Forty of these historic holes returned wide intercepts of low-grade zinc and lead mineralisation (Figure 2). Gravity surveying by Red Metal identified several high-priority, stratigraphic targets along trend and adjacent to historic mineralised drilling and BBDD24001A is the first in a series of tests on these new targets.


Future exploration on Bluebush will prioritise gravity targets closer to interpreted growth faults where potential for higher-grade mineralisation is speculated.


[Figure 2] Lawn Hill Project, Bluebush Prospect: Oblique 3D view facing northwest showing historic drilling with anomalous zinc shown on the down-hole trace, high gravity shells (pink-yellow) and high-magnetic shells (brown-grey) from 3D modelling, and four previously untested, high-priority, geophysical targets labelled BB1, BB2, BB3 and BB4.

[Figure 3] Lawn Hill Bluebush Prospect: Graphic log for BBDD24001A highlighting separate lead-silver and zinc zones and wide intervals of anomalous thallium and high silver/lead ratio.

[Figure 4] Lawn Hill Bluebush Prospect: Cross section showing lithology, specific gravity and dip of bedding. Note the very high specific gravity (rock density) measurements associated with the heavily pyritic sequences.

[Figure 5] Northwest Queensland and Northern Territory: Major deposits and Red Metal tenement locations.

This announcement was authorised by the Board of Red Metal.

For further information concerning Red Metal's operations and plans for the future please refer to the recently updated web site or contact Rob Rutherford, Managing Director at:

Phone +61 (0)2 9281-1805 www.redmetal.com.au

Rhutherford

Rob Rutherford Managing Director

Russell Barwick Chairman

Competent Persons Statement

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Robert Rutherford, who is a member of the Australian Institute of Geoscientists (AIG). Mr Rutherford is the Managing Director of the Company. Mr Rutherford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Rutherford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1 –Lawn Hill Project: JORC 2012 sampling techniques and data.

Criteria	JORC 2012 Explanation	Commentary
Sampling Techniques	Nature and quality of sampling	BBDD24001A is a rotary/mud diamond core hole designed to test the source of the stand out stratigraphic gravity target numbered BB01. BBDD24001A comprises rotary mud chips to 179.3 metres and HQ3 then NQ2 diamond drill core to the end of hole at 656.7 metres. The method of drilling is considered to be of an acceptable quality for evaluating the source of a geophysical target and reporting of exploration results. Sampling for geochemical analysis was selective and is not continuous down the whole length of the core. A one metre length of half core was regularly sampled about every 10 metres down the hole with one metre spaced half core samples collected over localised intervals of mineralisation or geological interest.
	Include reference to measures taken to ensure representativity samples and the appropriate calibration of any measurement tools or systems used.	Specific gravity determinations of one metre samples of core from intervals of sulphide mineralisation were made using the Archimedes method (weight in air)/(weight in air-weight in water). Samples for geochemical analysis were collected every metre through intervals of visible sulphide mineralisation. Unmineralised drill core was sampled every 4 metres locally increasing to 10 metres
	Aspects of the determination of mineralisation that are Material to the Public Report.	Visual results of the geology and mineralisation were observed by an experienced senior geologist and checked by the Exploration Manager of Red Metal. Anomalous base metal mineralisation was confirmed with assays.
Drilling Technique	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	A conventional multipurpose rotary mud, wire-line core rig was utilised to penetrate through the cover sequences to extract HQ3 and NQ2 diameter core samples in the basement. The core was oriented using Reflex ACT3. The drill hole was surveyed using an Axis Champ north seeking gyro.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	The length of recovered core and the core rock quality are logged for each core run. Core recovery throughout the fresh basement rocks is very good (90-100%). Minor intervals of lesser core recovery (44 - 80%) occur in, localised, 1-2 metre wide brecciated zones.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Diamond core is reconstructed into continuous runs on an angle iron cradle and marked with orientation lines. Depths are checked against depths marked on the core blocks and rod counts are routinely performed by the drillers.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No bias expected as very good core recovery
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature.	Quantitative geotechnical logging including RQD and core recovery are measured for each core run. Qualitative and quantitative codes and descriptions are used to record geological data such as lithology, mineralisation and alteration prior to sampling. Quantitative structural data is also measured prior to sampling. Specific gravity was quantified using the Archimedes Method at one metre intervals down the hole over the intervals of visible sulphide mineralisation. A total of 170 specific gravity measurements were collected. Magnetic susceptibility is quantified for the total length of the core with
	Core photography	measurements taken every 0.5 m and averaged over every core run (3 to 6 metres). Core is photographed wet and dry.
	The total length and percentage of the relevant intersections logged.	The total length of BBDD24001A has been geologically logged. RQD, specific gravity and magnetic susceptibility have been measured for the total length of the core.

Criteria	JORC 2012 Explanation	Commentary
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	All samples were sawn half-core (HQ3 or NQ2). Sample length was nominally 1 m but varied between 1 m and 1.4 m.
techniques and sample preparation		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All samples were prepared with standard crush/split/pulverisation techniques at ALS Mt Isa (method CRU-32c / SPL-22Y / PUL-32m).
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	Drilled core was generally of good quality with good core recoveries (>95%), leading to effective half-core sampling with a core saw.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Three field duplicate samples were collected.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Samples of ~1 m half-core are considered appropriate for material of < 2 mm grainsize.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	A total of 185 samples were assayed by ALS using four-acid (near total) digest with ICP-MS finishes that includes REE (method ME-MS61r). 26 samples were analysed for total carbon using method C-IRO7.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Hand held pXRF analyses were collected every 1 m down the length of the hole.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Blanks and certified reference material were inserted and represented approximately 5 % of samples assayed. Results and internal lab QC indicate acceptable levels of accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Result reviewed by senior geologist, Exploration Manager and the Managing Director
	The use of twinned holes.	No holes have been twinned
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is stored both in its source electronic form, and, where applicable, on paper. Assay data is retained in both the original certificate (.pdf) form, where available, and the text files received from the laboratory. Primary data was entered in the field into a portable logging device using standard drop-down codes. Text data files are exported and stored in an Access database. MapInfo software is used to check and validate drill-hole data.
	Discuss any adjustment to assay data.	No adjustments have been made
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The collar position for BBDD24001A was surveyed by Handheld GPS using GDA94, Zone54 datum. GPS locations are accurate to about 3 metres.
	Specification of the grid system used.	GDA94_Zone54 datum.
	Quality and adequacy of topographic control.	Topographic relief has been extracted using the ELVIS digital terrain
Data spacing and distribution	CONTROL Data spacing for reporting of Exploration Results.	information at Geoscience Australia Single hole testing a single deep geophysical target.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity	The drill pierce point spacing is not sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation

Criteria	JORC 2012 Explanation	Commentary
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	No sample compositing has been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Structural orientation data on core from BBDD24001A suggests the bedding dips about 35 degrees towards 225 degrees. Bedding makes a relatively high angle to core axis of about 70 degrees.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No bias is considered to have been introduced due to the high-angle of the bedding to the core axis.
Sample security	The measures taken to ensure sample security.	Core was logged and sampled at Red Metal's Cloncurry base and samples will be transported directly to ALS Mt Isa for preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits have been undertaken at this early stage.

Table 2 Lawn Hill Project: JORC 2012 reporting of exploration results.

Criteria	JORC 2012 Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Lawn Hill project drill hole BBDD24001A is located within EPM 27179 situated in the Lawn Hill region of Northwest Queensland. EPM 27179 is owned 100% by Red Metal Limited. An ancillary exploration access agreement has been established with the native title party and a standard landholder conduct and compensation agreement has been established with the pastoral lease holder at Lawn Hill Station.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Approximately 90 drill holes have been drilled by previous explorers within Red Metal's EPMs 27179 and 28465 which are part of the company's Lawn Hill project.
Geology	Deposit type, geological setting and style of mineralisation.	This project targets stratabound silver-lead-zinc mineralisation at the Blue Bush prospect where wide intervals of low-level zinc and lead mineralisation has been intersected by previous drilling.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of survey information for all Material drill holes:	Refer to Table 3 for a summary of drill hole collar data for BBDD24001A.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No data aggregation methods will be applied
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values will be been applied
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the	True widths are estimated by measuring the alpha and beta values relative to the oriented core axis for bedding in the hole. The bedding dips at approximately 35 degrees and true width is estimated to be 96% of the intercept width.

Criteria	JORC 2012 Explanation	Commentary
	down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer Figures 2 – 4, Table 3
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See text to this announcement
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Red Metal's Bluebush prospect occurs within key McArthur River equivalent stratigraphy and contains more than eighty eight historic drill holes, within a 15 by 13 kilometre area. Forty of these historic holes returned wide intercepts of low-grade zinc and lead mineralisation (Figure 2). Gravity surveying by Red Metal identified several high-priority, stratigraphic targets along trend and adjacent to historic mineralised drilling and BBDD24001A is the first in a series of tests on these new targets.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Future exploration on Bluebush will prioritise gravity targets closer to interpreted growth faults where potential for higher-grade mineralisation is speculated.

Table 3 – Lawn Hill Project: Drill collar summary Bluebush prospect.

Hole ID	Easting	Northing	Dip	Grid Azimuth	Depth	RL
BBDD24001A	298608	7979719	-70	360	656.7	38

Table 4 – Lawn Hill Project: Drill hole BBDD24001A assay data.

Hole ID	Sample ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
noie ib	Sample ID	(m)	(m)	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248063	182	183	0.28	19.8	14.8	94.7	87.7	6.02	0.87	2.64	5.8	634
BBDD24001A	GB248064	201	202	0.22	12.8	11.1	74.2	60	8.27	0.58	1.58	5.54	82
BBDD24001A	GB248065	220	221	0.05	4.9	10	61	27.6	3.81	0.15	0.57	4.68	114
BBDD24001A	GB248066	238	239	0.41	87.9	10.9	206	54.8	6.26	4.71	4.53	10.15	3230
BBDD24001A	GB248067	239	240	0.57	127.5	13.2	85.7	72.1	7.93	7.19	7.35	13.5	63
BBDD24001A	GB248068	240	241	0.78	139.5	10.8	69.1	89.6	9.54	8.96	9.06	12.8	62
BBDD24001A	GB248069	241	242	0.86	142	10.6	49.3	95.3	10.6	9.49	9.21	9.33	50
BBDD24001A	GB248070	242	243	1.04	117.5	8.4	67	125	10.5	9.01	9.71	8.39	33
BBDD24001A	GB248071	243	244	0.86	81.2	8.2	42.6	136	11.65	8.81	8.45	7.73	36
BBDD24001A	GB248073	244	245	0.73	83.8	10.4	53.4	133.5	10.7	8.82	8.46	10.7	54
BBDD24001A	GB248074	245	246	0.17	52.8	9.9	62.4	35.5	6.49	2.53	2.92	7.12	213
BBDD24001A	GB248075	247	248	0.31	49.7	8.7	41.9	80.2	7.12	5.28	4.66	24.8	114
BBDD24001A	GB248076	248	249	1.14	87.5	10.5	69.8	209	14.8	10	11.65	62.2	188
BBDD24001A	GB248077	249	250	0.79	88.1	10.6	56.7	189	12.4	10	10.7	37.2	152
BBDD24001A	GB248078	250	251	0.53	58.5	8.4	41.4	151	9.11	8.63	7.67	12.05	53
BBDD24001A	GB248079	251	252	0.72	130.5	15.8	95.4	285	12.45	9.69	9.95	9.69	829
BBDD24001A	GB248080	252	253	0.39	91.6	14.4	54.3	127	5.97	3.9	4.57	11.75	2360
BBDD24001A	GB248081	270	271	0.34	89	18	226	119	5.4	4.36	5.7	8.1	3110
BBDD24001A	GB248082	274	275	0.85	116	6.8	48.9	307	18.85	10	12.05	17.25	160
BBDD24001A	GB248083	275	276	0.92	96.2	1.9	30.1	352	34.4	10	8.81	15.15	135
BBDD24001A	GB248084	276	277	0.99	122.5	1.6	19	874	37.5	10	13.8	16.9	143
BBDD24001A	GB248085	277	278	0.41	120.5	5.7	15.1	450	29.2	10	7.37	17.3	86
BBDD24001A	GB248086	278	279	0.44	73.4	3	10.4	1295	34.1	10	7.55	23.7	149
BBDD24001A	GB248087	279	280	0.83	91.6	0.5	10	2350	40.2	10	8.21	23.7	215
BBDD24001A	GB248088	280	281	1.03	93.3	0.8	13.5	953	40.4	10	6.74	20.3	119
BBDD24001A	GB248089	281	282	0.62	87	5.1	16.1	423	27.8	10	5.67	15.9	103
BBDD24001A	GB248091	282	283	1.15	68.2	1.4	20.9	539	27.9	10	5.54	12.75	69
BBDD24001A	GB248092	283	284	0.63	57.4	5.4	21.6	287	17.55	10	4.92	12.7	46

Hole ID	Sample ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
Hole ID	Sample iD	(m)	(m)	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248093	284	285	0.68	53.2	4.7	49.2	393	17	10	5.08	11	35
BBDD24001A	GB248094	285	286	0.72	102	9.3	32.4	320	12.4	10	7.73	14.5	100
BBDD24001A	GB248095	300	301	2.17	106.5	13.2	28.5	114.5	6.85	5.75	4.77	13.05	27
BBDD24001A	GB248096	301	302	13.7	407	33.8	121	1525	29.6	10	17.1	32.5	1300
BBDD24001A	GB248097	302	303	1.61	98.1	23.6	22.8	87.8	5.67	3.4	2.62	13.5	253
BBDD24001A	GB248098	303	304	5.86	254	32.1	73.9	335	21.9	10	5.73	20.1	130
BBDD24001A	GB248099	304	305	3.26	149	16.8	41.5	182.5	28.4	8.51	2.48	9.82	52
BBDD24001A	GB248100	305	306	4.11	125.5	20.6	43.1	314	29.5	9.51	3.18	12.05	77
BBDD24001A	GB248101	306	307	6.25	136	35.9	60.2	427	29.7	10	4.37	15.65	43
BBDD24001A	GB248102	307	308	6.16	130	27.2	42.8	372	26.9	10	4.63	18.75	47
BBDD24001A	GB248103	308	309	6.44	121	20.8	31.2	336	28.4	10	5.05	15.6	35
BBDD24001A	GB248104	309	310	9.73	160	4.9	31.4	525	32.1	10	5.82	23.3	54
BBDD24001A	GB248105	310	311	5.18	155	11.8	29.9	320	23.4	10	3.85	26.8	39
BBDD24001A	GB248106	311	312	5.09	177.5	28.7	45.1	437	34.3	10	2.59	26.9	61
BBDD24001A	GB248108	312	313	5.16	154	29.4	35.3	635	33.9	10	1.94	20.4	157
BBDD24001A	GB248109	313	314	8.65	190.5	14.2	33.9	628	35.4	10	3.46	31.5	54
BBDD24001A	GB248110	314	315	7.45	142	2.2	12	627	33.7	10	2.13	29.3	67
BBDD24001A	GB248111	315	316	4.94	154	4.6	15.6	470	26.9	10	2.93	28.5	44
BBDD24001A	GB248112	316	317	4.59	378	21.5	18.6	443	29.2	10	3.05	33.4	43
BBDD24001A	GB248113	317	318	8.95	483	6.5	12	565	31.2	10	4.61	47.8	59
BBDD24001A	GB248114	318	319	6.28	350	3.4	11.4	695	31.8	10	4.71	49	106
BBDD24001A	GB248115	319	320	6.52	493	1.2	6.7	777	35.1	10	5.29	21.5	81
BBDD24001A	GB248116	320	321	5.48	204	2.2	11.2	878	31.9	10	5.19	37.3	77
BBDD24001A	GB248117	321	322	1.89	85.8	7.1	15.1	182	12	6.86	2.19	44.3	28
BBDD24001A	GB248118	322	323	4.65	160	8.6	36.3	392	27.3	10	4.39	27.8	38
BBDD24001A	GB248120	323	324	5.01	215	46.2	77.3	750	35.4	10	3.19	33.4	169
BBDD24001A	GB248121	324	325	3.89	167	36.5	59.6	583	32.8	10	2.44	25.8	74
BBDD24001A	GB248122	325	326	4.28	149	6.1	19	525	28.5	10	2.03	36.1	107
BBDD24001A	GB248123	326	327	5.84	187	1.4	14.1	669	35.3	10	2.26	37.3	78
BBDD24001A	GB248124	327	328	1.89	137.5	7.5	13.7	265	15.25	10	2.2	34.6	43

Hole ID	Sample ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
Hole ID	Sample ID	(m)	(m)	ppm	ppm	ррт	ppm	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248125	330	331	10.75	158.5	6.9	10	508	27.5	10	4.36	47.8	77
BBDD24001A	GB248126	331	332	16.65	191.5	16.5	7.6	842	32.8	10	6.35	52.9	101
BBDD24001A	GB248127	332	333	10.3	141.5	1.7	6.1	716	34.3	10	4.66	42.1	157
BBDD24001A	GB248128	333	334	5.67	144.5	4.3	9.6	376	28	10	2.48	40.1	99
BBDD24001A	GB248129	334	335	6.8	175.5	1	7.1	801	37.1	10	2.16	41.4	110
BBDD24001A	GB248130	335	336	3.61	294	4.4	10.6	711	29.8	10	1.83	35.3	135
BBDD24001A	GB248132	336	337	4.43	315	1.8	7.6	1785	35.5	10	2.28	37.2	187
BBDD24001A	GB248133	337	338	1.78	176	2.6	8.1	1030	33.1	10	1.78	46.3	147
BBDD24001A	GB248134	338	339	1.13	129	3.7	8	575	29.8	10	1.51	48	205
BBDD24001A	GB248135	339	340	2.59	161.5	0.8	6.9	1005	37.5	10	1.76	34.8	68
BBDD24001A	GB248136	340	341	4.89	172.5	1.2	6.5	1090	35.5	10	3.68	33.4	91
BBDD24001A	GB248137	341	342	3.67	131.5	3.3	9.4	376	30.4	10	3.46	33.1	46
BBDD24001A	GB248138	342	343	3.98	112.5	4.1	10.4	355	28.1	10	4.59	30.6	35
BBDD24001A	GB248139	343	344	5.56	87.2	2.3	5	472	34.2	10	5.37	19.65	39
BBDD24001A	GB248140	359	360	7.88	155.5	27.5	53.5	483	26.6	10	6.37	58.3	38
BBDD24001A	GB248141	360	361	9.1	211	65.6	119	744	30.8	10	8.94	280	76
BBDD24001A	GB248142	361	362	4.12	152	35	40.3	267	27.3	10	4.6	37.9	36
BBDD24001A	GB248143	362	363	11.7	243	5.2	88.3	914	31	10	8.64	137	109
BBDD24001A	GB248144	363	364	18.15	475	34	128.5	2170	36.1	10	13.4	233	361
BBDD24001A	GB248145	364	365	17.45	410	36.3	135	1730	40.9	10	14.5	151.5	392
BBDD24001A	GB248146	365	366	19.6	1485	153	272	2090	38.6	10	21.5	115	385
BBDD24001A	GB248147	366	367	21.6	1930	106.5	685	3840	37.6	10	24.7	128.5	3300
BBDD24001A	GB248149	367	368	14.7	1815	53.8	414	3950	39.1	10	15.8	59.6	1250
BBDD24001A	GB248150	368	369	23.2	1140	79.9	202	3500	39.1	10	21.1	310	346
BBDD24001A	GB248151	369	370	18.45	503	26.9	120.5	3980	36.4	10	16.4	460	440
BBDD24001A	GB248152	370	371	19.05	563	82.4	153	1980	34.8	10	16.5	273	237
BBDD24001A	GB248153	371	372	17.85	990	99.9	136.5	1265	36.8	10	15	81.3	187
BBDD24001A	GB248154	372	373	19.45	989	21.6	100.5	2890	28.9	10	19.85	101	2050
BBDD24001A	GB248155	373	374	23	524	2.1	53.2	1045	35	10	21.4	215	301
BBDD24001A	GB248156	374	375	3.3	224	7.4	16.9	233	14.35	10	6.32	66.6	82

Hole ID	Sample ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
Hole ID	Sample ID	(m)	(m)	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248157	375	376	5.48	781	3.6	17.6	1405	31.7	10	13.05	117.5	208
BBDD24001A	GB248159	376	377	1.54	390	2.4	9.4	647	23	10	6.69	87.6	57
BBDD24001A	GB248160	377	378	0.1	92.4	4.5	9.1	200	9.66	5.31	2.31	37.4	23
BBDD24001A	GB248161	378	379	0.12	124.5	5.8	11.4	254	8.98	5.35	3.38	43.3	29
BBDD24001A	GB248162	379	380	0.14	179	4.4	11.8	1210	21.5	10	4.35	155.5	193
BBDD24001A	GB248163	380	381	0.18	217	2.4	8.9	1080	31.7	10	5.47	69.6	59
BBDD24001A	GB248164	381	382	0.12	240	3.3	9.6	1125	31.5	10	6.11	79.2	87
BBDD24001A	GB248165	382	383	0.11	191.5	2.5	7.7	1130	34.2	10	4.9	70.6	84
BBDD24001A	GB248166	383	384	0.07	114	3.6	9.8	650	23.9	10	3.27	59.2	44
BBDD24001A	GB248167	384	385	0.13	137.5	3	8	1070	22	10	5.96	62.2	149
BBDD24001A	GB248169	385	386	0.25	175	2.5	12.1	1020	23.9	10	8.26	47	106
BBDD24001A	GB248170	386	387	0.09	99	11.1	14.4	107.5	5.56	4.33	2.87	47.6	30
BBDD24001A	GB248171	387	388	0.16	121.5	4.2	13	726	23.3	10	5.81	84	118
BBDD24001A	GB248172	388	389	0.15	139.5	5.9	14.6	691	21.4	10	5.73	56.2	55
BBDD24001A	GB248173	392	393	0.04	41.2	2.8	6	133	19.5	4.29	1.22	20.2	28
BBDD24001A	GB248174	393	394	0.22	107.5	1.3	12	1170	32	10	3.62	148	93
BBDD24001A	GB248175	394	395	0.12	130.5	9.6	18.5	235	9.46	7.3	3.26	45.6	29
BBDD24001A	GB248176	413	414	0.05	78.4	2.4	7.7	647	19.15	10	1.52	30.9	53
BBDD24001A	GB248177	414	415	0.06	86	3.7	9.2	815	18.2	10	1.75	34.5	88
BBDD24001A	GB248178	418	419	0.05	63.4	4.2	10.5	636	20.4	10	1.76	42.2	46
BBDD24001A	GB248179	419	420	0.08	99.7	3.9	12.3	839	22.5	10	2.12	38	127
BBDD24001A	GB248180	420	421	0.06	76.5	6	11.2	395	15.35	10	1.96	46.6	56
BBDD24001A	GB248181	429	430	0.17	55	5.1	14	314	11.9	8.07	2.4	30.4	44
BBDD24001A	GB248182	430	431	0.4	78.5	1.8	22	978	18.5	10	5.94	39.5	252
BBDD24001A	GB248183	431	432	0.1	38.8	4.2	10.4	189	6.33	4.89	1.94	18.1	40
BBDD24001A	GB248184	450	451	0.05	23.6	5.7	8.5	174.5	4.41	2.78	1.23	13.4	7100
BBDD24001A	GB248185	451	452	0.18	48.3	4	17.5	307	15.05	10	3.23	27.6	18900
BBDD24001A	GB248186	452	453	0.3	55.9	2.1	22.1	1020	16.5	10	3.89	40.2	24300
BBDD24001A	GB248188	453	454	0.33	89	1.8	32.8	989	23.4	10	6.12	62.8	937
BBDD24001A	GB248189	454	455	0.1	63.4	9.3	16	145.5	8.01	6.7	2.52	21.1	447

Hole ID	Sample ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
Hole ID	Sample iD	(m)	(m)	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248190	467	468	0.15	36	8.3	22.3	353	3.99	2.89	2.04	7.26	9120
BBDD24001A	GB248191	485	486	0.07	23.8	6.2	19.3	55.5	3.52	1.92	1.56	5.04	263
BBDD24001A	GB248192	496	497	0.07	21.4	8	19.3	27.8	4	1.78	1.29	5.29	36
BBDD24001A	GB248193	523	524	0.11	45.8	8.5	21.9	196	4.98	3.8	2.48	9.72	250
BBDD24001A	GB248194	535	536	0.07	32.4	7.9	15.8	129.5	4.67	3.26	2.02	9.64	1235
BBDD24001A	GB248195	536	537	0.03	13.6	5	8.7	62.5	3.11	1.32	0.86	5.66	1455
BBDD24001A	GB248196	537	538	0.07	35	8.3	12.6	144	4.92	3.41	1.85	11.45	2530
BBDD24001A	GB248197	538	539	0.11	44.5	6.6	17.4	303	8.64	7.31	2.59	13.85	9480
BBDD24001A	GB248198	539	540	0.09	50.9	5.7	17	493	9.47	7.92	2.01	15.05	4100
BBDD24001A	GB248199	540	541	0.07	42	6.2	14.8	234	9.12	7.57	1.76	13.25	4090
BBDD24001A	GB248200	541	542	0.1	35.1	5.6	16.4	551	8.81	7.54	1.76	18	11450
BBDD24001A	GB248202	542	543	0.15	65.2	3.4	25.7	822	16.8	10	2.67	40	5300
BBDD24001A	GB248203	543	544	0.07	48.4	4.2	15.7	301	11.2	9.14	1.69	17.2	2110
BBDD24001A	GB248204	544	545	0.04	44.8	5.4	13.6	193.5	8.41	6.16	1.66	12.7	2780
BBDD24001A	GB248205	545	546	0.06	47	8.9	15	147	6.43	5.23	1.94	12.05	3390
BBDD24001A	GB248206	546	547	0.11	64.8	3.6	25.3	589	15.1	10	3.47	25.7	11650
BBDD24001A	GB248207	547	548	0.11	83.7	5.8	23	517	14.45	10	3.61	18.4	8410
BBDD24001A	GB248208	548	549	0.03	24.5	6.7	8.6	83	4.78	2.42	1.05	7.18	1090
BBDD24001A	GB248209	549	550	0.04	28.7	7.8	12	103	5.68	3.51	1.38	9.75	1370
BBDD24001A	GB248210	550	551	0.06	33.5	6.4	14.2	188	8.3	5.7	1.56	11.95	5300
BBDD24001A	GB248211	551	552	0.07	48.4	4.1	11	484	13.2	10	1.15	17.9	4360
BBDD24001A	GB248212	552	553	0.12	93	2.3	15.8	1230	22.9	10	2.13	24.8	1915
BBDD24001A	GB248213	553	554	0.03	41.8	7.4	9.5	89.4	5.72	3.86	1.16	8.28	2390
BBDD24001A	GB248214	554	555	0.04	30.9	8.8	11.2	83.9	4.69	2.64	1.04	8.63	309
BBDD24001A	GB248215	555	556	0.03	30.2	8.4	11.6	78	4.88	2.66	1.12	8.79	641
BBDD24001A	GB248217	556	557	0.06	48.3	8.7	17.2	155	7.36	5.67	1.84	13.2	2270
BBDD24001A	GB248218	557	558	0.19	82.9	3.2	32.5	806	20.1	10	3.14	45.3	11200
BBDD24001A	GB248219	558	559	0.08	72.6	6.8	18.4	304	11.1	9.8	1.9	20.7	2910
BBDD24001A	GB248220	559	560	0.06	41.2	7.8	12.2	105.5	5.53	3.51	1.41	9.96	2570
BBDD24001A	GB248221	560	561	0.08	41.3	7.3	14	127	5.81	3.57	1.87	11.2	4340

	Comela ID	From	То	Ag	As	Со	Cu	Pb	Fe	S	Sb	TI	Zn
Hole ID	Sample ID	(m)	(m)	ррт	ppm	ppm	ррт	ppm	%	%	ppm	ppm	ppm
BBDD24001A	GB248223	561	562	0.06	25.8	6	10.7	98.9	5.08	2.43	1.29	9.4	2320
BBDD24001A	GB248224	562	563	0.04	21.9	5.4	9.8	87.1	5.03	2.32	1.12	7.87	1595
BBDD24001A	GB248225	563	564	0.08	33	5.3	12.2	142	6.54	4.18	1.64	10.4	4680
BBDD24001A	GB248226	564	565	0.09	29.9	3.9	10.5	301	7.01	4.21	1.52	9.16	9880
BBDD24001A	GB248227	565	566	0.12	39	4.5	12.9	381	7.11	5.12	1.94	13.4	8850
BBDD24001A	GB248228	566	567	0.09	50.2	7.2	13	185	5.28	3.8	1.66	9.27	3070
BBDD24001A	GB248229	567	568	0.1	49.9	7.3	14	152.5	5.39	3.9	2.03	11.9	2200
BBDD24001A	GB248230	571	571.6	0.48	131	3.1	37.2	1475	21.3	10	6.84	84.7	16350
BBDD24001A	GB248232	571.6	573	0.09	53	7.9	12.4	118	5.08	3.87	1.99	8.46	3510
BBDD24001A	GB248233	574	575	0.07	27.5	7.2	8.7	75.4	3.82	2.05	1.27	6.01	1140
BBDD24001A	GB248234	575	576	0.18	75.9	9.5	20.6	144.5	5.84	5.11	2.78	9.53	1120
BBDD24001A	GB248235	578	579	0.1	55.6	8.2	15	64.3	4	2.44	1.82	5.78	53
BBDD24001A	GB248236	579	580	0.08	29.1	7.5	12	34.6	3.51	1.85	1.54	5.11	1410
BBDD24001A	GB248237	580	581	0.22	73.2	9.2	22.5	68.6	5.19	4.34	3.21	7.6	42
BBDD24001A	GB248238	592	592.9	0.12	33.5	7.7	10.3	30.4	3.78	2.4	1.96	4.32	19
BBDD24001A	GB248239	592.9	593.1	1.21	318	21	81.1	347	16.55	10	9.3	17.8	60
BBDD24001A	GB248240	593.1	594	0.04	8.8	3.7	5.8	12	2.1	0.66	0.55	2.28	12
BBDD24001A	GB248241	609	610	0.32	53.3	9.3	20.6	44.8	4	2.84	2.59	3.95	63
BBDD24001A	GB248242	630	631	0.24	42.4	12.8	21.2	43.9	4.59	3.09	4.18	3.42	33
BBDD24001A	GB248243	637	638	0.43	59.1	7.4	32.3	81.7	4.75	3.63	4.65	4.13	736
BBDD24001A	GB248244	638	639	0.48	64.1	9.1	31.2	77.1	5.01	3.99	4.95	5.27	1060
BBDD24001A	GB248245	639	640	0.54	63.2	9.1	28.1	80.2	4.85	3.75	5.27	4.98	1390
BBDD24001A	GB248246	640	641	0.43	56.1	11	30	60.1	4.94	3.82	5.27	3.89	41
BBDD24001A	GB248247	655	656	0.31	51.5	11	22.6	54	4.64	3.04	4.41	4.03	29